A computational analysis of model transition-metal terminal boride [MB(PNP)] complexes is reported. A combination of density functional theory methods, natural bond orbital analysis, and multiconfiguration self-consistent field calculations were employed to investigate the structure and bonding of terminal boride complexes, in particular, the extent of metal dπ-boron pπ bonding. Comparison of metal-boride, -borylene, and-boryl bond lengths confirms the presence of metal-boron π bonds, albeit the modest shortening (∼3%) of the metal-boron bond suggests that the π-bonding is very weak in terminal borides. Calculated free energies of H addition to the boride complexes to yield the corresponding boryl complexes indicate that metal-boride π-bond strengths are 22 kcal/mol or less as compared to 44 kcal/mol for an analogous nitride complex. It is concluded that, for the boride complexes studied, covering a range of different 4d and 5d metals, that the metal-boride bond consists of a reasonably covalent σ but two very polarized metal-boron π bonds. The high polarization of the boron-to-metal π bonds indicates that the terminal boride is an acceptor or Z-type ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.7b09103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!