Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells.

Biochem Biophys Res Commun

Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Diabetes Research and Care, Beijing 100730, China. Electronic address:

Published: January 2018

Mitochondrial metabolism plays an essential role in the regulation of insulin release and glucose homeostasis. Evidence demonstrated that the angiotensin-converting enzyme 2 (ACE2) participates in the regulation of glucose metabolism, however, its role in mitochondrial metabolism remains unclear. The purpose of our study was to determine if ACE2 can regulate mitochondrial function in pancreatic β-cells. We found that ACE2 over-expression restored glucose-stimulated insulin secretion (GSIS) and mitochondrial membrane potential (MMP) in the presence of HO in INS-1 cells. PCR array demonstrated that ACE2 over-expression up-regulated 67 mitochondria-related genes in INS-1 cells. In pancreatic islets, ACE2 ablation attenuated intracellular calcium influx with a decrease in GSIS. Ace2 mice islets exhibited impaired mitochondrial respiration and lower production of ATP, along with decreased expression of genes involved in mitochondrial oxidation. In islets from db/db mice, ACE2 over-expression increased intracellular calcium influx and restored impaired mitochondrial oxidation, potentially causing an increase in GSIS. These results shed light on the potential roles of ACE2 in mitochondrial metabolism, moreover, may improve our understanding of diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.11.055DOI Listing

Publication Analysis

Top Keywords

mitochondrial metabolism
12
ace2 over-expression
12
mitochondrial
9
angiotensin-converting enzyme
8
mitochondrial function
8
function pancreatic
8
pancreatic β-cells
8
ace2
8
ins-1 cells
8
intracellular calcium
8

Similar Publications

The roles of mitochondria in global and local intracellular calcium signalling.

Nat Rev Mol Cell Biol

January 2025

MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.

Activation of Ca channels in Ca stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca]) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca uptake and chelation, alongside efficient Ca release mechanisms. Still, mitochondria do not store Ca in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca] signals.

View Article and Find Full Text PDF

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!