Fibrodysplasia ossificans progressiva (FOP) is a rare bone disease characterized by episodic events of heterotopic ossification (HO). All cases of FOP have been attributed to mutations in the ACVR1 gene that render the encoded BMP type I ALK2 receptor hypersensitive, resulting in the activation of BMP signaling, at inappropriate times in inappropriate locations. The episodic or sporadic nature of HO associated with FOP rests with the occurrence of specific 'triggers' that push the hypersensitive ALK2-FOP receptor into full signaling mode. Identification of these triggers and their mechanism of action is critical for preventing HO and its devastating consequences in FOP patients. Models of FOP, generated in Drosophila, are shown to activate the highly conserved BMP signaling pathway in both Drosophila cell culture and in developing tissues in vivo. The most common FOP mutation, R206H, in ALK2 and its synonymous mutation, K262H, in the orthologous Drosophila receptor Sax, abolish the ability of wild type receptors to inhibit BMP ligand-induced signaling and lead to ubiquitous pathway activation in both cases but with important differences. When expressed in Drosophila, human ALK2 exhibits constitutive signaling. Sax on the other hand can elicit excessive signaling similar to that observed for ALK2 in mammalian systems in vivo. For example, hyperactive signaling mediated by Sax is triggered by an increase in ligand or in type II receptors. Interestingly, while the constitutive nature of ALK2 in Drosophila requires activation by the type II receptor, it does not require its ligand binding domain. The differences exhibited by the two Drosophila FOP models enable a valuable comparative analysis poised to reveal critical regulatory mechanisms governing signaling output from these mutated receptors. Modifier screens using these Drosophila FOP models will be extremely valuable in identifying genes or compounds that reduce or prevent the hyperactive BMP signaling that initiates HO associated with FOP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2017.11.001 | DOI Listing |
Background: Fetal Alcohol Spectrum Disorders (FASD) describes a wide range of neurological defects and craniofacial malformations associated with prenatal ethanol exposure. While there is growing evidence for a genetic component to FASD, little is known of the cellular mechanisms underlying these ethanol-sensitive loci in facial development. Endoderm morphogenesis to form lateral protrusions called pouches is one key mechanism in facial development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan.
Recently, we demonstrated that the alopecia observed in vitamin D receptor gene-deficient (-KO) rats is not seen in rats with a mutant VDR(R270L/H301Q), which lacks ligand-binding ability, suggesting that the ligand-independent action of VDR plays a crucial role in maintaining the hair cycle. Since -KO rats also showed abnormalities in the skin, the relationship between alopecia and skin abnormalities was examined. To clarify the mechanism of actions of vitamin D and VDR in the skin, protein composition, and gene expression patterns in the skin were compared among -KO, -R270L/H301Q, and wild-type (WT) rats.
View Article and Find Full Text PDFMolecules
December 2024
Graduate School of Pharmaceutical Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure 737-0112, Japan.
Farnesoid X receptor (FXR), a nuclear receptor, is expressed in calvaria and bone marrow stromal cells and plays a role in bone homeostasis. However, the mechanism of FXR-activated osteoblast differentiation remains unclear. In this study, we investigated the regulatory mechanism underlying FXR-activated osteoblast differentiation using bone morphogenetic protein-2 (BMP-2)-induced mouse ST-2 mesenchymal stem cells.
View Article and Find Full Text PDFJ Mol Biol
January 2025
Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address:
BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China. Electronic address:
This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!