How can using an ultrasonic diffraction grating lead to slurry characterization? The diffraction grating, which is formed by machining triangular grooves on the flat surface of an aluminum unit, has send and receive transducers fastened to the unit at an angle of 30°. The ultrasonic beam strikes the back of the grating, in contact with the slurry, and reflects a beam to the receive transducer; m = 0 and m = 1 beams are transmitted into the slurry. The angle of the m = 1 beam changes with frequency and, at the critical frequency f, it reaches 90°. When f < f, the m = 1 beam disappears, its energy is shared with all other beams, producing a peak in the receive transducer. The change in peak height with slurry concentration determines the attenuation; the frequency at the peak yields the velocity of sound. The attenuation has been measured for polystyrene spheres, ranging in size from 98 µm to 463 µm, and slurry concentrations up to 20 wt%. When the spheres are immersed in water, sugar water, or mineral oil, the attenuation measurements show the effect of particle diameter and the viscosity of the base fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2017.10.003 | DOI Listing |
Sci Rep
December 2024
Physical Research Laboratory, Ahmedabad, Gujarat, 380009, India.
Talbot length, the distance between two consecutive self-image planes along the propagation axis for a periodic diffraction object (grating) illuminated by a plane wave, depends on the period of the object and the wavelength of illumination. This property makes the Talbot effect a straightforward technique for measuring the period of a periodic object (grating) by accurately determining the Talbot length for a given illumination wavelength. However, since the Talbot length scale is proportional to the square of the grating period, traditional Talbot techniques face challenges when dealing with smaller grating periods and minor changes in the grating period.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
An objective soft x-ray flat-field spectrograph employing a laminar-type bilayer coated, varied-line-spacing, spherical grating was designed to improve the detection limit and sensitivity of soft x-ray flat-field spectrographs in a region of 250-550 eV. As a design criterion, spectral flux, SF, [Hatano et al., Appl.
View Article and Find Full Text PDFACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.
View Article and Find Full Text PDFMed Phys
December 2024
Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
Background: The complementary absorption contrast CT (ACT) and differential phase contrast CT (DPCT) can be generated simultaneously from an x-ray computed tomography (CT) imaging system incorporated with grating interferometer. However, it has been reported that ACT images exhibit better spatial resolution than DPCT images. By far, the primary cause of such discrepancy remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!