A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined use of microbial consortia isolated from different agricultural soils and cyclodextrin as a bioremediation technique for herbicide contaminated soils. | LitMetric

The phenylurea herbicide diuron is persistent in soil, water and groundwater and is considered to be a highly toxic molecule. The principal product of its biodegradation, 3,4-dichloroaniline, exhibits greater toxicity than diuron and is persistent in the environment. Five diuron degrading microbial consortia (C1C5), isolated from different agricultural soils, were investigated for diuron mineralization activity. The C2 consortium was able to mineralize 81.6% of the diuron in solution, while consortium C3 was only able to mineralize 22.9%. Isolated consortia were also tested in soil slurries and in all cases, except consortium C4, DT (the time required for the diuron concentration to decline to half of its initial value) was drastically reduced, from 700 days (non-inoculated control) to 546, 351, and 171 days for the consortia C5, C2, and C1, respectively. In order to test the effectiveness of the isolated consortium C1 in a more realistic scenario, soil diuron mineralization assays were performed under static conditions (40% of the soil water-holding capacity). A significant enhancement of diuron mineralization was observed after C1 inoculation, with 23.2% of the herbicide being mineralized in comparison to 13.1% for the control experiment. Hydroxypropyl-β-cyclodextrin, a biodegradable organic enhancer of pollutant bioavailability, used in combination with C1 bioaugmentation in static conditions, resulted in a significant decrease in the DT (214 days; 881 days, control experiment). To the best of our knowledge, this is the first report of the use of soil-isolated microbial consortia in combination with cyclodextrins proposed as a bioremediation technique for pesticide contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.10.172DOI Listing

Publication Analysis

Top Keywords

microbial consortia
12
diuron mineralization
12
isolated agricultural
8
agricultural soils
8
bioremediation technique
8
contaminated soils
8
diuron
8
diuron persistent
8
consortium mineralize
8
static conditions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!