Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microsorum pteropus (M. pteropus), an aquatic Polypodiaceae fern, was identified as a novel potential cadmium (Cd) hyperaccumulator in our previous study. This study reveals the Cd-resistance mechanisms and their difference between the root and leaf of M. pteropus based on analyses of photosynthesis, antioxidant systems and gene expression. A high level of Cd at 500μM was used to treat the samples to test the effects of this compound. Superoxide dismutase (SOD), peroxidase (POD), malondialdehyde (MDA) and flavonoids were used as indicators for antioxidant system changes. Five chlorophyll fluorescent parameters including the maximal photochemical efficiency of photosystem II (F/F), effective quantum yield of photosystem II (Y(II)), photochemical quenching (qP), nonphotochemical quenching (qN) and electron transport rate (ETR) were measured to determine the photosynthetic changes. RNA-sequencing analysis was used to study the changes in gene expression. The results showed that after exposure to high levels of Cd, the concentrations of enzymatic oxidants (SOD and POD) were significantly increased, while the MDA levels were significantly decreased. There were no significant changes for the chlorophyll fluorescent parameters during Cd stress, which indicates that M. pteropus is highly effective at protecting itself. Certain functional genes, including photosystem genes and secondary metabolites, had significantly altered levels of expression. Different Cd-resistance mechanisms were found between the root and leaf tissues of M. pteropus. The root tissues of M. pteropus resist Cd damage using antioxidants, while its leaf tissues mainly protect themselves using photosystem self-protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.10.271 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!