The chironomid community in non-wadeable lotic systems was tested as a source of information in the construction of biological metrics which could be used into the bioassessment protocols of large rivers. In order to achieve this, we simultaneously patterned the chironomid community structure and environmental factors along the catchment of the Danube and Sava River. The Self organizing map (SOM) recognized and visualized three different structural types of chironomid community for different environmental properties, described by means of 7 significant abiotic factors (a multi-stressor gradient). Indicator species analysis revealed that the chironomid taxa most responsible for structural changes significantly varied in their abundance and frequency along the established environmental gradients. Out of 40 biological metrics based on the chironomid community, the multilayer perceptron (MLP), an supervised type of artificial neural network, derived 5 models in which the abundance of Paratrichocladius rufiventis, Orthocladiinae, Cricotopus spp., Cricotopus triannulatus agg. and Cricotopus/Orthocladius ratio achieved a significant relationship (the r Pearson's linear correlation coefficient>0.7) with the multi stressor environment. The sensitivity analysis "partial derivatives" (PaD) method showed that all 5 biological metrics within the multi-stressor gradient were mostly influenced by dissolved organic carbon (DOC). Despite short and monotonous environmental gradients and the absence of reference conditions, the chironomid community structure and biological metrics predictably changed along the multistress range, showing a great potential for the bioassessment of large rivers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.10.262DOI Listing

Publication Analysis

Top Keywords

chironomid community
20
biological metrics
16
metrics bioassessment
8
large rivers
8
community structure
8
multi-stressor gradient
8
environmental gradients
8
chironomid
6
metrics
5
community
5

Similar Publications

The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kg), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene.

View Article and Find Full Text PDF

Dynamics of spp. Biomass and Environmental Variability: A Case Study in the Neva Estuary (The Easternmost Baltic Sea).

Biology (Basel)

November 2024

Zoological Institute of Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint-Petersburg, Russia.

Predicting which non-indigenous species (NISs) will establish persistent invasive populations and cause significant ecosystem changes remains an important environmental challenge. We analyzed the spatial and temporal dynamics of the entire zoobenthos and the biomass of spp., one of the most successful invaders in the Baltic Sea, in the Neva estuary in 2014-2023.

View Article and Find Full Text PDF

Water pollution caused by ash from grassland fires alters the molecular, biochemical, and morphological biomarkers of non-biting midge larvae.

J Hazard Mater

December 2024

Post-graduation program in Ecology and Biodiversity Conservation, Federal University of Mato Grosso (UFMT), Mato Grosso, MT 78060-900, Brazil; Post-graduation program in Ecology. Department of Ecology and Zoology, Laboratory of Freshwater Biodiversity, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil.

The frequency and intensity of wildfires have been increasing in many parts of the world, which may result in biodiversity loss. Wildfires can devastate plant communities, generating toxic ash that pollutes watercourses through runoff. However, our understanding of the effects of ash exposure on aquatic biodiversity is still limited.

View Article and Find Full Text PDF

In the 1980s, liming became a large-scale, governmentally supported restoration program implemented by many countries to mitigate the effects of acidification of freshwaters. Despite some 50 years of liming of thousands of lakes and streams, its efficacy remains largely debated. This study is the first of its kind to use paleolimnological reconstructions using both subfossil chironomid assemblages and their carbon stable isotopic composition to compare the ecological trajectories of limed and control (unlimed) lakes over the last 100 years in order to unravel the effects of liming on Scandinavian lakes.

View Article and Find Full Text PDF

Macrobenthic communities in a lake are affected by the type of bottom cover such as macrophytes or algae. In the southern basin of Lake Biwa, mats of the benthic cyanobacteria (BC) widely cover the lake bottom and are interspersed with submerged macrophytes (SMs). Because different macrobenthos species appear to occur at those bottoms, we investigated the composition of the communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!