Tc NMR has been suggested as an original method of evaluating the content of oxygen isotopes in oxygen-18-enriched water, a precursor for the production of radioisotope fluorine-18 used in positron emission tomography. To this end, solutions of NH TcO or NaTcO (up to 0.28 mol/L) with natural abundance of oxygen isotopes in virgin or recycled O-enriched water have been studied by Tc NMR. The method is based on O/ O/ O intrinsic isotope effects in the Tc NMR chemical shifts, and the statistical distribution of oxygen isotopes in the coordination sphere of TcO and makes it possible to quantify the composition of enriched water by measuring the relative intensities of the Tc NMR signals of the Tc O O isotopologues. Because the oxygen exchange between TcO and enriched water in neutral and alkaline solutions is characterized by slow kinetics, gaseous HCl was bubbled through a solution for a few seconds to achieve the equilibrium distribution of oxygen isotopes in the Tc coordination sphere without distortion of the oxygen composition of the water. Pertechnetate ion was selected as a probe due to its high stability in solutions and the significant Tc NMR shift induced by a single O→ O substitution (-0.43 ± 0.01 ppm) in TcO and spin coupling constant J( Tc- O) (131.46 Hz) favourable for the observation of individual signals of Tc O O isotopologues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.4680 | DOI Listing |
Sci Total Environ
January 2025
University of Tokyo, Japan.
Over the last 20 years, we have dramatically improved hydrometeorological data including isotopes, but are we making the most of this data? Stable isotopes of oxygen and hydrogen in the water molecule (stable water isotopes - SWI) are well known tracers of the global hydrological cycle producing critical climate science. Despite this, stable water isotopes are not explicitly included in influential climate reports (e.g.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA.
Hypoxia tolerance and its variation with temperature, activity, and body mass, are critical ecophysiological traits through which climate impacts marine ectotherms. To date, experimental determination of these traits is limited to a small subset of modern species. We leverage the close coupling of carbon and oxygen in animal metabolism to mechanistically relate these traits to the carbon isotopes in fish otoliths (δC).
View Article and Find Full Text PDFArchaeol Anthropol Sci
December 2024
Institut Català d'Arqueologia Clàssica (ICAC-CERCA), Tarragona, ES Spain.
Unlabelled: During the Iron Age, north-eastern Iberian communities relied on crop cultivation and animal husbandry for their subsistence. The latter was mainly focused on caprine, with sheep being prominent due to their suitability to the Mediterranean climate, orography, and environment. Despite the pivotal role of sheep in livestock husbandry, information on Iberian communities' feeding strategies for this species is limited.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
Wuhan Center, China Geological Survey (Central South China Innovation Center for Geosciences), Wuhan 430205, China.
Nitrate pollution in water bodies is a worldwide environmental problem, and identifying the sources of nitrate is of great significance to guarantee the sustainable use of water resources. A variety of water chemistry indicators and nitrate nitrogen and oxygen isotopes (N-NO and O-NO) were used to analyze the water chemistry characteristics of water bodies in Shiyan to identify the sources of nitrate in the water bodies and to calculate the contribution rate of nitrate from different pollution sources of the water bodies using the SIMMR model. The results showed that the hydrochemical types of surface water and groundwater in the study area were dominated by the HCO-Ca·Mg type, and the formation of nitrate in the water body was mainly affected by nitrification, with non-obvious denitrification.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
To explore the changes in groundwater hydrochemistry and its source influence in the low water level period of the southern oasis area of Gaochang District, Turpan City before and after the management of groundwater overexploitation, based on 12 groups of water samples in 2016 (three groups of unconfined water, nine groups of confined water) and 18 groups of water samples in 2023 (five groups of unconfined water, thirteen groups of confined water), mathematical statistics, hydrochemical diagraph, hydrogen and oxygen isotope means, and an absolute principle component-multiple linear regression (APCS-MLR) model were used to analyze the changes and sources of groundwater hydrochemistry. The results showed that due to the dynamic conditions of groundwater, the dominant cation changed from Na to Ca, and the anion changed from HCO to SO. The dominant cation of confined water changed from Ca to Na, and the dominant anion remained unchanged as SO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!