The sigma receptor (σR) is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it modulates Ca exchange between the ER and mitochondria by interacting with inositol-1,4,5 trisphosphate receptors (IPRs). The σR is highly expressed in the central nervous system and its activation stimulates neuromodulation and neuroprotection, for instance in Alzheimer's disease (AD) models in vitro and in vivo. σR effects on mitochondria pathophysiology and the downstream signaling are still not fully understood. We here evaluated the impacts of σR ligands in mouse mitochondria preparations on reactive oxygen species (ROS) production, mitochondrial respiration, and complex activities, in physiological condition and after direct application of amyloid Aβ peptide. σR agonists (2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate hydrochloride (PRE-084), tetrahydro-N,N-dimethyl-5,5-diphenyl-3-furanmethanamine (ANAVEX1-41, AN1-41), (S)-1-(2,8-dimethyl-1-thia-3,8-diazaspiro[4.5]dec-3-yl)-3-(1H-indol-3-yl)propan-1-one (ANAVEX3-71, AN3-71), dehydroepiandrosterone-3 sulfate (DHEA), donepezil) increased mitochondrial ROS in a σR antagonist-sensitive manner but decreased Aβ-induced increase in ROS. σR ligands (agonists or antagonists) did not impact respiration but attenuated Aβ-induced alteration. σR agonists (PRE-084, AN1-41, tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73, AN2-73), AN3-71) increased complex I activity, in a Ca-dependent and σR antagonist-sensitive manner. σR ligands failed to affect complex II, III, and IV activities. The increase in complex I activity explain the σR-induced increase in ROS since ligands failed to affect other sources of ROS accumulation in mitochondria and homogenates, namely NADPH oxidase (NOX) and superoxide dismutase (SOD) activities. Furthermore, Aβ significantly decreased the activity of complexes I and IV and σR agonists attenuated the Aβ-induced complex I and IV dysfunctions. σR activity in mitochondria therefore results in a Ying-Yang effect, by triggering moderate ROS increase acting as a physiological signal and promoting a marked anti-oxidant effect in pathological (Aβ) conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12640-017-9838-2 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, USA.
Large-scale and detailed analyses of activity in the United States (US) remain limited. In this work, we leveraged the comprehensive wearable, demographic, and survey data from the All of Us Research Program, the largest and most diverse population health study in the US to date, to apply and extend the previous global findings on activity inequality within the context of the US. We found that daily steps differed by sex at birth, age, body characteristics, geography, and built environment.
View Article and Find Full Text PDFSci Rep
January 2025
College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The scientific establishment of the Ecological Security Pattern (ESP) is crucial for fostering the synergistic development of ecological and recreational functions, thereby enhancing urban ecological protection, recreational development, and sustainable growth. This study aimed to propose a novel method of constructing ESP considering both ecological and recreational functions, and to reconstruct ESP by weighing the relationship between ecological protection and recreational development. Utilizing Fuzhou City as a case study, a comprehensive application of methodologies including Morphological Spatial Pattern Analysis (MSPA), landscape connectivity analysis, ArcGIS spatial analysis, social network analysis (SNA), and circuit theory is employed to develop both the ESP and the Recreational Spatial Pattern (RSP).
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!