Efficient multiparty quantum key agreement with collective detection.

Sci Rep

Science and Technology on Communication Security Laboratory, Chengdu, 610041, China.

Published: November 2017

As a burgeoning branch of quantum cryptography, quantum key agreement is a kind of key establishing processes where the security and fairness of the established common key should be guaranteed simultaneously. However, the difficulty on designing a qualified quantum key agreement protocol increases significantly with the increase of the number of the involved participants. Thus far, only few of the existing multiparty quantum key agreement (MQKA) protocols can really achieve security and fairness. Nevertheless, these qualified MQKA protocols are either too inefficient or too impractical. In this paper, an MQKA protocol is proposed with single photons in travelling mode. Since only one eavesdropping detection is needed in the proposed protocol, the qubit efficiency and measurement efficiency of it are higher than those of the existing ones in theory. Compared with the protocols which make use of the entangled states or multi-particle measurements, the proposed protocol is more feasible with the current technologies. Security and fairness analysis shows that the proposed protocol is not only immune to the attacks from external eavesdroppers, but also free from the attacks from internal betrayers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681706PMC
http://dx.doi.org/10.1038/s41598-017-15227-6DOI Listing

Publication Analysis

Top Keywords

quantum key
16
key agreement
16
security fairness
12
proposed protocol
12
multiparty quantum
8
mqka protocols
8
key
6
quantum
5
protocol
5
efficient multiparty
4

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

Interlayer coupling in 2D heterostructures can result in a reduction of the rotation symmetry and the generation of quantum phenomena. Although these effects have been demonstrated in transition metal dichalcogenides (TMDs) with mismatched interfaces, the role of band hybridization remains unclear. In addition, the creation of flat bands at the valence band maximum (VBM) of TMDs is still an open challenge.

View Article and Find Full Text PDF

Ingeniously regulating the conformational equilibrium and ESPT mechanism of HBT-DPI by solvent environment: A novel perspective.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Physics, Changchun University of Science and Technology, Changchun 130022 China. Electronic address:

HBT-DPI was a single-molecule multi-conformational fluorescent material and had unique applications for hydrophobic/hydrophilic mapping on large-scale heterogeneous surfaces. In this paper, the different proton transfer processes and luminescence mechanisms of HBT-DPI in Dichloromethane (DCM, no hydrogen bond (HB) receptor) and N, N-Dimethylformamide (DMF, HB receptor) solvents were systematically studied. Using the quantum chemistry method, the stable structures of HBT-DPI in two solvents were determined based on the Boltzmann distribution.

View Article and Find Full Text PDF

Impact of ibuprofen on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox system.

J Hazard Mater

January 2025

Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.

Ibuprofen (IBU), a commonly used non-steroidal anti-inflammatory drug, is frequently detected in wastewater treatment systems, where it can interfere with nitrogen removal. This study investigated the effects of IBU on nitrogen removal performance and its biotransformation in a coupled sulfur autotrophic denitrification and anammox (SAD/A) system. Moreover, key parameters, such as nitrogen removal efficiency, microbial activity, community structure, and IBU degradation products, were carefully monitored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!