Formins are a conserved group of proteins that nucleate and processively elongate actin filaments. Among them, the formin homology domain-containing protein (FHOD) family of formins contributes to contractility of striated muscle and cell motility in several contexts. However, the mechanisms by which they carry out these functions remain poorly understood. Mammalian FHOD proteins were reported not to accelerate actin assembly ; instead, they were proposed to act as barbed end cappers or filament bundlers. Here, we show that purified Fhod and human FHOD1 both accelerate actin assembly by nucleation. The nucleation activity of FHOD1 is restricted to cytoplasmic actin, whereas Fhod potently nucleates both cytoplasmic and sarcomeric actin isoforms. Fhod binds tightly to barbed ends, where it slows elongation in the absence of profilin and allows, but does not accelerate, elongation in the presence of profilin. Fhod antagonizes capping protein but dissociates from barbed ends relatively quickly. Finally, we determined that Fhod binds the sides of and bundles actin filaments. This work establishes that Fhod shares the capacity of other formins to nucleate and bundle actin filaments but is notably less effective at processively elongating barbed ends than most well studied formins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767859PMC
http://dx.doi.org/10.1074/jbc.M117.800888DOI Listing

Publication Analysis

Top Keywords

actin filaments
16
barbed ends
12
fhod family
8
proteins nucleate
8
actin
8
fhod
8
accelerate actin
8
actin assembly
8
fhod binds
8
human fhod
4

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Melanocortin 5 receptor signaling protects against podocyte injury in proteinuric glomerulopathies.

Kidney Int

January 2025

Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Division of Kidney Disease and Hypertension, Rhode Island Hospital, the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA. Electronic address:

Melanocortin therapeutics, exemplified by adrenocorticotropic hormone, have a proven steroidogenic-independent anti-proteinuric and glomerular protective effect. The biological functions of melanocortins are mediated by melanocortin receptors (MCR), including MC1R, which recent studies have shown to protect against glomerular disease. However, the role of other MCRs like MC5R is unknown.

View Article and Find Full Text PDF

Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.

View Article and Find Full Text PDF

For investigating the host response in associated pneumonia, we analyzed the host genetic sequences obtained from metagenomic next-generation sequencing (mNGS). The samples for mNGS were bronchoalveolar lavage fluid (BALF) collected from the lungs of patients infected with and from patients without bacterial infections. BALF samples from patients with pneumonia were collected from the lungs of patients infected with with New Delhi metallo-β-lactamase (NDM, before treatment), A.

View Article and Find Full Text PDF

: Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuropathy primarily involving motor and sensory neurons. Mutations in INF2, an actin assembly factor, cause two diseases: peripheral neuropathy CMT-DIE (MIM614455) and/or focal segmental glomerulosclerosis (FSGS). These two phenotypes arise from the progressive degeneration affecting podocytes and Schwann cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!