Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment.

Neuropharmacology

Neuron Glia Biology in Health and Disease, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal. Electronic address:

Published: February 2018

AI Article Synopsis

  • High S100B protein levels are linked to adverse outcomes in perinatal inflammatory conditions, impacting oligodendrocyte differentiation and myelination.
  • Using primary OL cultures, it was found that excess S100B impairs the maturation of oligodendrocyte precursor cells, a process that can be mitigated by a RAGE antagonist.
  • In more complex models, elevated S100B not only hinders oligodendrogenesis and myelination but also disrupts neuronal integrity and promotes inflammation, suggesting therapeutic targeting of S100B and its interactions could help address brain damage in these conditions.

Article Abstract

High levels of the inflammatory molecule S100B protein have been identified in sera from several perinatal inflammatory conditions involving myelin damage and associated with an adverse prognosis or the emergence of sequelea. S100B is essential for oligodendrocyte (OL) differentiation and maturation, but it remains to be established if excessive levels of released S100B upon early brain injury are deleterious in the neurodevelopmental period. Here, we investigated this possibility by evaluating how elevated S100B affects oligodendrogenesis during this period. First, using primary cultures of OL we observed that damage-induced micromolar levels of S100B impair OL differentiation process. S100B elevated concentrations reduced both transition from immature NG2 oligodendrocyte precursor cells (OPC) to mature MBP OL, and morphological maturation of differentiated OL. Interestingly, these effects were abolished by the use of receptor for advanced glycation end-products (RAGE) antagonist FPS-ZM1, suggesting an involvement of the S100B-RAGE axis on oligodendrogenesis impairment. Next, we used organotypic cerebellar slice cultures to explore the role of S100B in a more complex multicellular environment. Also in this model excessive S100B levels impaired oligodendrogenesis resulting in a reduced myelination. Further, elevated S100B levels compromised neuronal and synaptic integrity, while inducing astrogliosis, nuclear factor (NF)-kB activation and inflammation. Again, the FPS-ZM1 co-treatment prevented S100B-induced damaging effects. Overall, our results indicate that persistently elevated S100B levels have deleterious effects during the neurodevelopmental period through RAGE-dependent processes. Thus, targeting high S100B levels and/or S100B-RAGE interaction may constitute good therapeutic strategies to reduce brain injury, including deficits in neuronal architecture, synaptogenesis and myelination associated with perinatal inflammatory conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2017.11.002DOI Listing

Publication Analysis

Top Keywords

s100b levels
20
elevated s100b
16
s100b
12
impaired oligodendrogenesis
8
myelination elevated
8
levels
8
perinatal inflammatory
8
inflammatory conditions
8
brain injury
8
neurodevelopmental period
8

Similar Publications

Traumatic brain injuries (TBIs) are a leading cause of mortality and morbidity, particularly in forensic settings where determining the cause of death and timing of injury is critical. Glial fibrillary acidic protein (GFAP), a biomarker specific to astrocytes, has emerged as a valuable tool in post-mortem analyses of TBI. A PRISMA-based literature search included studies examining GFAP in human post-mortem samples such as brain tissue, cerebrospinal fluid (CSF), serum, and urine.

View Article and Find Full Text PDF

Plasma S100β is a predictor for pathology and cognitive decline in Alzheimer's disease.

Fluids Barriers CNS

January 2025

Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.

Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.

Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.

View Article and Find Full Text PDF

Vitiligo is a depigmenting disorder characterized by melanocyte loss, which results in pigment dilution of the skin. Vitiligo is commonly associated with thyroid disorders and thyroid stimulating hormone (TSH) is a sensitive marker to detect thyroid disorders. S100B is damage associated molecular pattern (DAMP) molecule released when there is melanocyte damage.

View Article and Find Full Text PDF

Background And Aim: COVID-19 is associated with neurological complications, termed neuro-COVID, affecting patient outcomes. We aimed to evaluate the association between serum neurofilament light chain (NfL) and S100B biomarkers with the presence of neurological manifestations and functional prognosis in COVID-19 patients.

Methods: A multicenter prospective cohort study was conducted in three hospitals in the Emilia-Romagna region, Italy, from March 2020 to April 2022.

View Article and Find Full Text PDF

Neurological Biomarker Profiles in Royal Canadian Air Force (RCAF) Pilots and Aircrew.

Brain Sci

December 2024

Canadian Forces Environmental Medicine Establishment, Toronto, ON M3K 2C9, Canada.

Background/objectives: Military aviators can be exposed to extreme physiological stressors, including decompression stress, G-forces, as well as intermittent hypoxia and/or hyperoxia, which may contribute to neurobiological dysfunction/damage. This study aimed to investigate the levels of neurological biomarkers in military aviators to assess the potential risk of long-term brain injury and neurodegeneration.

Methods: This cross-sectional study involved 48 Canadian Armed Forces (CAF) aviators and 48 non-aviator CAF controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!