Dual-targeting/Multi-targeting of oncoproteins by a single drug molecule represents an efficient, logical and alternative approach to drug combinations. An increasing interest in this approach is indicated by a steady upsurge in the number of articles on targeting dual/multi proteins published in the last 5 years. Combining different inhibitors that destiny specific single target is the standard treatment for cancer. A new generation of dual or multi-targeting drugs is emerging, where a single chemical entity can act on multiple molecular targets. Dual/Multi-targeting agents are beneficial for solving limited efficiencies, poor safety and resistant profiles of an individual target. Designing dual/multi-target inhibitors with predefined biological profiles present a challenge. The latest advances in bioinformatic tools and the availability of detailed structural information of target proteins have shown a way of discovering multi-targeting molecules. This neoteric artifice that amalgamates the molecular docking of small molecules with protein-based common pharmacophore to design multi-targeting inhibitors is gaining great importance in anticancer drug discovery. Current review focus on the discoveries of dual targeting agents in cancer therapy using rational, computational, proteomic, bioinformatics and polypharmacological approach that enables the discovery and rational design of effective and safe multi-target anticancer agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2017.10.021DOI Listing

Publication Analysis

Top Keywords

dual multi-targeting
8
multi-targeting inhibitors
8
anticancer agents
8
inhibitors
4
inhibitors generation
4
generation anticancer
4
agents
4
agents dual-targeting/multi-targeting
4
dual-targeting/multi-targeting oncoproteins
4
oncoproteins single
4

Similar Publications

Certain immune-checkpoint inhibitors have a narrow therapeutic window (TW) as cancer therapeutics, and engineered dual-/multi-targeting agents could potentially widen the TW to bring true clinical benefits. We report a new rationally-designed bispecific-antibody (BsAb), HX009, simultaneously targeting PD1 and CD47 to improve both the efficacy and safety over the respective single-targeting agents by grafting the extracellular domain of SIRPα onto the parental anti-PD1-monoclonal antibody, HX008. This resulted in an IgG4-based "2 × 2" symmetric structure but with an intentionally-reduced CD47-binding affinity, suggesting a novel candidate cancer immunotherapy.

View Article and Find Full Text PDF

Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science.

Pharmacol Res

November 2024

Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada. Electronic address:

Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction.

View Article and Find Full Text PDF

A multi-targeting immunotherapy ameliorates multiple facets of Alzheimer's disease in 3xTg mice.

NPJ Vaccines

August 2024

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.

Alzheimer's disease (AD) is an intricate disorder involving amyloid deposits, neurofibrillary tangles, and chronic neuroinflammation. Though current Aβ-directed immunotherapies effectively eliminate amyloid plaques, their limited clinical benefits and notable safety concerns arise from overlooking two other neglected neurodegenerative features. Compelling evidence highlights synergistic cooperation between Aβ and tau, underscoring the imperative need to develop combinational therapies to target the diverse pathologies of AD.

View Article and Find Full Text PDF

Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial irreversible neurological disorder with multiple enzymes involved. In the treatment of AD, multifunctional agents targeting cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors have shown promising results. Herein, a series of novel quinoline-sulfonamides (a1-18) were designed and synthesized as a dual inhibitor of MAOs and ChEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!