Osteoarthritis (OA) is the most common joint disorder and affects approximately half of the aged population. Current treatments for OA are largely palliative until the articular cartilage has been deeply damaged and irreversible morphological changes appear. Thus, effective methods are needed for diagnosing and monitoring the progression of OA during its early stages when therapeutic drugs or biological agents are most likely to be effective. Various proteinases involved in articular cartilage degeneration in pre-OA conditions, which may represent the earliest reversible measurable changes, are considered diagnostic and therapeutic targets for early OA. Of these proteinases, matrix metalloproteinase 13 (MMP-13) has received the most attention, because it is a central node in the cartilage degradation network. In this review, we highlight the main MMP-13-related changes in OA chondrocytes, including alterations in the activity and expression level of MMP-13 by upstream regulatory factors, DNA methylation, various non-coding RNAs (ncRNAs), and autophagy. Because MMP-13 and its regulatory networks are suitable targets for the development of effective early treatment strategies for OA, we discuss the specific targets of MMP-13, including upstream regulatory proteins, DNA methylation, non-coding RNAs, and autophagy-related proteins of MMP-13, and their therapeutic potential to inhibit the development of OA. Moreover, the various entities mentioned in this review might be useful as early biomarkers and for personalized approaches to disease prevention and treatment by improving the phenotyping of early OA patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681770PMC
http://dx.doi.org/10.1186/s13075-017-1454-2DOI Listing

Publication Analysis

Top Keywords

mmp-13 regulatory
8
articular cartilage
8
upstream regulatory
8
dna methylation
8
methylation non-coding
8
non-coding rnas
8
early
6
mmp-13
5
insights mmp-13
4
regulatory
4

Similar Publications

Background: Osteoarthritis (OA) is one of the most common bone disorders and has a serious impact on the quality of life of patients. LncRNA-HCP5 (HCP5) is downregulated in OA tissues. However, the latent function and regulatory mechanisms of HCP5 in OA are unclear.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a leading cause of pain, disability, and reduced mobility worldwide, characterized by metabolic imbalances in chondrocytes, extracellular matrix (ECM), and subchondral bone. Emerging evidence highlights the critical role of long non-coding RNAs (lncRNAs) in OA pathogenesis. This study focuses on lncRNA PTS-1, a novel lncRNA, to explore its function and regulatory mechanisms in OA progression.

View Article and Find Full Text PDF

The regulatory role of BMP9 on lipopolysaccharide-induced matrix metalloproteinases in human stem cells from the apical papilla.

Arch Oral Biol

December 2024

Chongqing Key Laboratory of Oral Diseases, Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education College of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, China. Electronic address:

Objective: The aim of this study was to investigate changes in the expression of members of the matrix metalloproteinases (MMPs) family in response to lipopolysaccharide (LPS) stimulation and to investigate the regulatory effects of BMP9 on MMPs.

Design: The extracted human stem cells from the apical papilla (hSCAPs) were identified by flow cytometry, Alizarin Red staining, Oil Red O staining, and alkaline phosphatase staining. The appropriate LPS concentration for inducing inflammation in hSCAPs was determined using real-time quantitative PCR (RT-qPCR) and Cell Counting Kit-8 (CCK-8) assays.

View Article and Find Full Text PDF

Human periodontal ligament cells (hPDLCs) express matrix metalloproteinases (MMPs), a group of enzymes responsible for the destruction of most extracellular matrix proteins in dental tissues, especially MMP-1, MMP-2, and MMP-13. Exploring the regulatory mechanism of MMPs is crucial for understanding external root resorption (ERR), one of the most severe complications, along with substantial loss of dental tissue, induced by trauma, pulpal infection, tooth bleaching, and orthodontic treatment, etc. Discoidin domain receptor 1 (DDR1), a cell surface receptor binding to collagen, has the potential to regulate the expression of MMP-1, MMP-2, and MMP-13, but the mechanism remains unclear.

View Article and Find Full Text PDF

Small extracellular vesicles derived from synovial fibroblasts contain distinct miRNA profiles and contribute to chondrocyte damage in osteoarthritis.

Arthritis Res Ther

September 2024

School of Health and Life Sciences, University of the West of Scotland, Hamilton International Technology Park, Lanarkshire Campus, Stephenson Place, South Lanarkshire, G72 0LH, Scotland, UK.

Background: Small extracellular vesicles (sEV) derived from synovial fibroblasts (SF) represent a novel molecular mechanism regulating cartilage erosion in osteoarthritis (OA). However, a comprehensive evaluation using disease relevant cells has not been undertaken. The aim of this study was to isolate and characterise sEV from OA SF and to look at their ability to regulate OA chondrocyte effector responses relevant to disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!