Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms.

FEMS Microbiol Ecol

Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Anker Engelunds Vej Building 301, Kgs Lyngby 2800, Denmark.

Published: December 2017

Microbial biofilms are tightly packed, heterogeneous structures that serve as arenas for social interactions. Studies on Gram negative models reveal that during evolution in structured environments like biofilms, isogenic populations commonly diversify into phenotypically and genetically distinct variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discovered that-similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity of the evolved colony types. Interestingly, one of the morphotypes completely lost the ability of independent biofilm formation and evolved to hitchhike with other morphotypes with improved biofilm forming abilities. Genome comparison suggests that major phenotypic transformations between the morphotypes can be triggered by subtle genetic differences. Our work demonstrates how positive complementarity effects and exploitative interactions intertwine during evolutionary diversification in biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fix155DOI Listing

Publication Analysis

Top Keywords

exploitative interactions
8
bacillus subtilis
8
variants variants
8
evolutionary diversification
8
biofilm formation
8
biofilms
5
evolution exploitative
4
interactions
4
interactions diversification
4
diversification bacillus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!