Effects of quinidine, disopyramide, and procainamide on the acetylcholine (ACh)-induced K+ channel current were examined in single atrial cells, using the tight-seal, whole-cell clamp technique. The pipette solution contained guanosine-5'-triphosphate (GTP) or guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S, a nonhydrolysable GTP analogue). In GTP-loaded cells, not only ACh but also adenosine induced a specific K+ channel current via GTP-binding proteins (G) by activating muscarinic ACh or adenosine receptors. Quinidine and disopyramide depressed the ACh-induced K+ current quite effectively. Procainamide had a weak inhibitory effect. Quinidine also depressed adenosine-induced K+ current, while the effect of disopyramide on adenosine-induced current was much smaller than that on ACh-induced current. In GTP-gamma S-loaded cells, the K+ channel was uncoupled from the receptors and was activated irreversibly, probably due to direct activation of G proteins by GTP-gamma S. Quinidine depressed the GTP-gamma S-induced K+ current just as in the cases of ACh- and adenosine-induced currents of GTP-loaded cells. Disopyramide had only a weak inhibitory effect and procainamide showed no effect. From these results, it is strongly suggested that the major mechanisms underlying the anti-cholinergic effects of quinidine, disopyramide, and procainamide are different; quinidine may inhibit the muscarinic K+ channel itself and/or G proteins, while disopyramide and high doses of procainamide may mainly block functions of muscarinic ACh receptors in atrial myocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.res.64.2.297 | DOI Listing |
Front Cardiovasc Med
October 2022
First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany.
Background: Brugada syndrome (BrS) is associated with ventricular tachyarrhythmias. However, the presence of electrical strom (ES) and its management still debated.
Objectives: We present the outcome and management of 44 BrS patients suffering from ES.
Int J Mol Sci
January 2021
Biological Physics Group, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK.
Electrical remodelling as a result of homeodomain transcription factor 2 (Pitx2)-dependent gene regulation was linked to atrial fibrillation (AF) and AF patients with single nucleotide polymorphisms at chromosome 4q25 responded favorably to class I antiarrhythmic drugs (AADs). The possible reasons behind this remain elusive. The purpose of this study was to assess the efficacy of the AADs disopyramide, quinidine, and propafenone on human atrial arrhythmias mediated by Pitx2-induced remodelling, from a single cell to the tissue level, using drug binding models with multi-channel pharmacology.
View Article and Find Full Text PDFFront Pharmacol
October 2020
First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany.
Short QT syndrome (SQTS) is associated with tachyarrhythmias and sudden cardiac death. So far, only quinidine has been demonstrated to be effective in patients with SQTS type 1(SQTS1). The aim of this study was to investigate the mechanisms of disopyramide underlying its antiarrhythmic effects in SQTS1 with the N588K mutation in HERG channel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!