The analysis of intracellular ATP can reveal the response of cells to different treatments and is important for individualized medicine. In the present study, we developed a cell penetrating peptides (CPPs) tagged luciferase (TAT-LUC) for tumor chemosensitivity assay. The activity of recombinant TAT-LUC was evaluated using ATP standard solution and tumor cells. This recombinant TAT-LUC was then used for the analysis of sensitivity index (SI) of four strains of tumor cells. The results showed that TAT-LUC could detect less than 10 nM extracellular ATP with a strong correlation between the luminescence intensity and the ATP content (R2 = 0.994). Without cell lysis, the detection limit for intracellular ATP analysis was 40 tumor cells. Furthermore, chemosensitivity of four strains of tumor cells (Skov-3/DDP, A549/DDP, MDA-MB-231, Huh-7) was determined by this assay successfully. The cell penetration ability of TAT-LUC enables the assay not only to reflect drug resistance of tumor cells real-timely but also to minimize the test time, which can be a valuable aid for personalized cancer chemotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681261 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186184 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!