Chemotaxis to self-generated AI-2 promotes biofilm formation in .

Microbiology (Reading)

Department of Biology, 3258 TAMU, Texas A&M University, College Station, TX 77843-3258, USA.

Published: December 2017

Responses to the interspecies quorum-sensing signal autoinducer-2 (AI-2) regulate the patterns of gene expression that promote biofilm development. also senses AI-2 as a chemoattractant, a response that requires the periplasmic AI-2-binding protein LsrB and the chemoreceptor Tsr. Here, we confirm, as previously observed, that under static conditions highly motile cells self-aggregate and form surface-adherent structures more readily than cells lacking LsrB and Tsr, or than Δ cells unable to produce AI-2. This difference is observed both at 37 and 30 °C. Cells deleted for the genes encoding the operon repressor (Δ), or the AI-2 kinase (Δ), or an AI-2 uptake channel protein (Δ), or an AI-2 metabolism enzyme (Δ) are also defective in biofilm formation. The Δ and Δ cells are totally defective in AI-2 chemotaxis, whereas the other mutants show normal or near-normal chemotaxis to external gradients of AI-2. These data demonstrate that chemotaxis to external AI-2 is necessary but not sufficient to induce the full range of density-dependent behaviours that are required for optimal biofilm formation. We also demonstrate that, compared to other binding-protein-dependent chemotaxis systems in , low levels (on the order of ~250 molecules of periplasmic LsrB per wild-type cell and as low as ~50 molecules per cell in some mutants) are adequate for a strong chemotaxis response to external gradients of AI-2.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.000567DOI Listing

Publication Analysis

Top Keywords

biofilm formation
12
ai-2
11
chemotaxis external
8
external gradients
8
gradients ai-2
8
chemotaxis
6
cells
5
chemotaxis self-generated
4
self-generated ai-2
4
ai-2 promotes
4

Similar Publications

Fungal periprosthetic joint infections (PJIs) are rare but increasingly recognized complications following total joint arthroplasty (TJA). While remains the most common pathogen, non-albicans species and other fungi, such as , have gained prominence. These infections often present with subtle clinical features and affect patients with significant comorbidities or immunosuppression.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

During coffee production, the removal and disposal of the coffee bean-surrounding layers pose an environmental problem. In this work, we examined the effects of several aqueous coffee cherry extracts on the growth and metabolism, biofilm formation, antioxidant capacity and antimicrobial activity of six lactobacilli from the INIA collection and a commercial probiotic GG strain. Growth medium supplementation with different coffee cherry extracts (at 40%) stimulated strain growth and metabolism.

View Article and Find Full Text PDF

Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate Persistence.

Int J Mol Sci

January 2025

Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.

is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by .

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!