This study investigated the interaction among valsartan (VAL), TGF-β pathways, and long non-coding RNA (lncRNA) cardiac hypertrophy-related factor (CHRF) in doxorubicin (DOX)-induced heart failure (HF), and explored their roles in DOX-induced HF progression. HF mice models in vivo were constructed by DOX induction. The expression of CHRF and TGF-β1 in hearts was detected, along with cardiac function, caspase-3 activity, and cell apoptosis. Primary myocardial cells were pretreated with VAL, followed by DOX induction in vitro for functional studies, including the detection of cell apoptosis with terminal deoxynucleotidyl transferase dUTP nick-end labeling and the expression of proteins associated with TGF-β1 pathways. HF models were established in vivo and in vitro. Expression of CHRF and TGF-β1 was up-regulated, and cell apoptosis and caspase-3 activity were increased in the hearts and cells of the HF models. VAL supplementation alleviated the cardiac dysfunction and injury in the HF process. Moreover, overexpressed CHRF up-regulated TGF-β1, promoted myocardial cell apoptosis, and reversed VAL's cardiac protective effect, while interference of CHRF (si-CHRF) did the opposite. Down-regulation of CHRF reversed the increased expression of TGF-β1 and the downstream proteins induced by pcDNA-TGF-β1 in HL-1 cells, while overexpression of CHRF reversed the VAL's cardiac protective effect in vivo. In conclusion, VAL regulates TGF-β pathways through lncRNA CHRF to improve DOX-induced HF.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-017-0980-4DOI Listing

Publication Analysis

Top Keywords

cell apoptosis
16
chrf
9
pathways lncrna
8
lncrna chrf
8
chrf improve
8
heart failure
8
tgf-β pathways
8
dox induction
8
expression chrf
8
chrf tgf-β1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!