Sepsis is defined as life-threatening organ dysfunction induced by a disrupted host response to infecting pathogens. Evidences suggest that oxidative stress is intrinsically related to sepsis progression. Dimethyl fumarate (DMF) is a novel oral therapeutic agent with anti-oxidant properties which exerts protective effects through activation of nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2). Thus, the aim of this study is to evaluate the effect of DMF in different organs of rats submitted to an animal model of sepsis. Adult male Wistar rats were subjected to sepsis by cecal ligation and puncture (CLP) procedure and sham-operated rats was considered control group. The experimental groups were divided into sham + vehicle, sham + DMF, sham + NAC, CLP + vehicle, CLP + DMF, and CLP + NAC. Rats were treated by oral gavage with DMF immediately after and 12 h after surgery, or NAC (s.c.) at 3, 6, and 12 h after surgery. Twenty-four hours after sepsis induction, neutrophil infiltration, nitrite/nitrate concentrations, oxidative damage to lipids and proteins, superoxide dismutase (SOD), and catalase (CAT) activities were evaluated in the heart, liver, lung, and kidney. Septic animals presented increased neutrophil infiltration, NO metabolism, oxidative damage to lipids and proteins, and decreases of SOD and CAT activities, mainly in the heart, liver, and lung, while DMF-treated animals showed significant reduction in neutrophil infiltration, NO metabolism, and oxidative damage followed by increased SOD and CAT activities. DMF is effective in preventing oxidative stress and inflammation in rats 24 h after sepsis induction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-017-0689-zDOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
neutrophil infiltration
12
oxidative damage
12
cat activities
12
dimethyl fumarate
8
stress inflammation
8
12 h surgery
8
sepsis induction
8
damage lipids
8
lipids proteins
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!