Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice.

Psychopharmacology (Berl)

Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.

Published: January 2018

Rationale: Alzheimer's disease (AD) is characterized by memory loss and synaptic damage. Previous studies suggested that xanthoceraside decreases glutamate-induced PC12 cell death, ameliorates memory deficits, and increases the number of dendritic spines in AD mice. These results indicated that xanthoceraside might have activities that protect synaptic plasticity. Herein, we detected the effect of xanthoceraside on synaptic function.

Materials And Methods: Three-month-old APP/PS1 transgenic mice were orally treated with xanthoceraside (0.02, 0.08, or 0.32 mg/kg) once daily for 4 months and then behavioral tests were performed. LTP and Fluo-4/AM were carried out in vivo and in vitro, respectively. CaMKII-GluR1 and NR2B-associated proteins on synapses were measured.

Results: Xanthoceraside administration alleviated learning-memory deficits and increased the LTP in APP/PS1 transgenic mice. Meanwhile, xanthoceraside increased the expression of pT286-CaMKII in synaptic and extrasynaptic pools and CaMKII, pS831-GluR1, and GluR1 in synaptic pools. In addition, xanthoceraside increased the total pY1472-NR2B and NR2B expression and increased the levels of pY1472-NR2B in synaptic and extrasynaptic pools and NR2B in synaptic pools. However, NR2B was decreased in extrasynaptic pools, which might be associated with decreased expression of STEP and pY531-Fyn. In vitro studies showed that xanthoceraside inhibited intracellular calcium overload and increased the number of and extended the length of dendrites in primary hippocampal neurons compared with the Aβ group.

Conclusions: The mechanism of xanthoceraside on ameliorating learning-memory deficits might be related to decrease intracellular calcium overload, increase CaMKII-GluR1 proteins, and up-regulate trafficking of pY1472-NR2B at synapse, thereby improving LTP in APP/PS1 transgenic mice.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-017-4775-6DOI Listing

Publication Analysis

Top Keywords

app/ps1 transgenic
16
transgenic mice
16
learning-memory deficits
12
extrasynaptic pools
12
xanthoceraside
10
ltp app/ps1
8
xanthoceraside increased
8
synaptic extrasynaptic
8
synaptic pools
8
pools nr2b
8

Similar Publications

Silibinin's role in counteracting neuronal apoptosis and synaptic dysfunction in Alzheimer's disease models.

Apoptosis

January 2025

Department of Laboratory Animal Science, China Medical University, No. 77, Puhe Road, Shenbei New District, Shenyang, Liaoning Province, 110122, China.

This study investigates silibinin's capacity to mitigate Alzheimer's disease (AD) pathologies with a particular emphasis on its effects on apoptosis and synaptic dysfunction in AD models. Employing APP/PS1 transgenic mice and SH-SY5Y neuroblastoma cell lines, our research assessed the efficacy of silibinin in reducing amyloid-beta (Aβ) deposition, neuroinflammation, and neuronal apoptosis. Our results demonstrate that silibinin significantly decreases Aβ accumulation and neuroinflammation and robustly inhibits apoptosis in neuronal cells.

View Article and Find Full Text PDF

Aerobic exercise (AE) has been shown to offer significant benefits for Alzheimer's disease (AD), potentially influencing the gut microbiota. However, the impact of changes in intestinal flora in early Alzheimer's disease induced by aerobic exercise on metabolic pathways and metabolites is not well understood. In this study, 3-month-old APP/PS1 and C57BL/6 mice were divided into two groups each: a control group (ADC for APP/PS1 and WTC for C57BL/6) and an aerobic exercise group (ADE for APP/PS1 and WTE for C57BL/6).

View Article and Find Full Text PDF

SIRT2 and ALDH1A1 as critical enzymes for astrocytic GABA production in Alzheimer's disease.

Mol Neurodegener

January 2025

Center for Cognition and Sociality, Life Science Institute (LSI), Institute for Basic Science (IBS), Daejeon, Republic of Korea.

Background: Alzheimer's Disease (AD) is a neurodegenerative disease with drastically altered astrocytic metabolism. Astrocytic GABA and HO are associated with memory impairment in AD and synthesized through the Monoamine Oxidase B (MAOB)-mediated multi-step degradation of putrescine. However, the enzymes downstream to MAOB in this pathway remain unidentified.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression.

View Article and Find Full Text PDF

Age- and Sex-Specific Regulation of Serine Racemase in the Retina of an Alzheimer's Disease Mouse.

Invest Ophthalmol Vis Sci

January 2025

State Key Laboratory of Ophthalmology, Optometry, and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Purpose: Changes associated with Alzheimer's disease (AD) may have measurable effects on the retina, which may facilitate early detection due to the eye's accessibility. Retinal pathology and the regulation of serine racemase (SR) were investigated in the retinas of APP(SW)/PS1(∆E9) mice.

Methods: SR in the retinas and the content of D-serine in the aqueous humor were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!