Introduction: The abnormal amyloid β (Aβ) accumulation and Aβ-related neural network dysfunction are considered central to the pathogenesis of Alzheimer's disease (AD) at the early stage. Deep-brain reachable low field magnetic stimulation (DMS), a novel noninvasive approach that was designed to intervene the network activity in brains, has been found to alleviate stress-related cognitive impairments.

Methods: Amyloid precursor protein/presenilin-1 transgenic mice (5XFAD) were treated with DMS, and cognitive behavior and AD-like pathologic changes in the neurochemical and electrophysiological properties in 5XFAD mice were assessed.

Results: We demonstrate that DMS treatment enhances cognitive performances, attenuates Aβ load, upregulates postsynaptic density protein 95 level, and promotes hippocampal long-term potentiation in 5XFAD mouse brain. Intriguingly, the gamma burst magnetic stimulation reverses the aberrant gamma oscillations in the transgenic hippocampal network.

Discussion: This work establishes a solid foundation for the effectiveness of DMS in treating AD and proposes a future study of gamma rhythm stimulation on reorganizing rhythmic neural activity in AD brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671620PMC
http://dx.doi.org/10.1016/j.trci.2017.07.002DOI Listing

Publication Analysis

Top Keywords

magnetic stimulation
12
gamma rhythm
8
low field
8
field magnetic
8
alzheimer's disease
8
gamma
4
rhythm low
4
stimulation
4
stimulation alleviates
4
alleviates neuropathologic
4

Similar Publications

Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site.

View Article and Find Full Text PDF

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Background: Cyclic vomiting syndrome (CVS) is defined by its episodic patterning. Furthermore, CVS is associated with other episodic disorders such as migraine and epilepsy. Indeed, many of the medications that are known to be useful for prophylaxis and abortive therapy in CVS are also effective in preventing and aborting migraines and seizures.

View Article and Find Full Text PDF

Background: Non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), may offer an alternative treatment strategy for impulsive behaviour. By modulating brain activity, these techniques could potentially enhance impulse control and mitigate impulsivity.

Aims: To provide a comprehensive analysis of the correlation between NIBS parameters, targeted brain regions and impulsivity.

View Article and Find Full Text PDF

Objective: To assess the available evidence of non-invasive or minimally invasive neuromodulation therapies in improving urodynamic outcomes, voiding diaries, and quality of life in patients with neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI).

Data Sources: A comprehensive search of 10 databases from inception until August 30, 2023 was conducted.

Study Selection: Randomized controlled trials (RCTs) assessing the effects of conventional treatment (CT) and CT combined with sham stimulation (SS), transcranial magnetic stimulation (TMS), sacral nerve magnetic stimulation (SNMS), TMS+SNMS, sacral pulsed electromagnetic field therapy (SPEMFT), sacral transcutaneous electrical nerve stimulation (STENS), sacral dermatomal transcutaneous electrical nerve stimulation (SDTENS), bladder & sacral transcutaneous electrical nerve stimulation (B&STENS), transcutaneous tibial nerve stimulation (TTNS), transcutaneous electrical acupoint stimulation (TEAS), pelvic floor electrical stimulation (PFES), or pelvic floor biofeedback therapy (PFBFBT) on postvoid residual volume (PVR), maximum cystometric capacity (MCC), number of voids per 24 h (V24), mean urine volume per micturition, (MUV), maximum urinary flow rate (Qmax), maximum detrusor pressure (MDP), maximum voiding volume (MVV), number of leakages per 24 h (L24), lower urinary tract symptoms (LUTS) score, and spinal cord injury-quality of life (SCI-QoL)score in patients with NLUTD after SCI were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!