Introduction: Brain distribution of synaptic vesicle protein 2A was measured with fluorine-18 UCB-H ([F]UCB-H) and positron emission tomography (PET).

Methods: Images of synaptic density were acquired in healthy volunteers (two young participants and two seniors). Input function was measured by arterial blood sampling (arterial input function) and derived from PET images using carotid activity (image-derived input function). Logan graphical analysis was used to estimate regional synaptic vesicle protein 2A distribution volume.

Results: [F]UCB-H uptake was ubiquitous in cortical and subcortical gray matter. Arterial input function and image-derived input function provided regional distribution volume with a high linear relationship.

Discussion: The cerebral distribution of [F]UCB-H is similar to that recently observed with carbon-11 UCB-J ([C]UCB-J). An accurate [F]UCB-H quantification can be performed without invasive arterial blood sampling when no suitable reference region is available, using dynamic PET carotid activity. Brain synaptic density can be studied in vivo in normal and pathological aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671624PMC
http://dx.doi.org/10.1016/j.trci.2017.08.004DOI Listing

Publication Analysis

Top Keywords

input function
20
synaptic vesicle
12
vesicle protein
12
brain synaptic
8
positron emission
8
emission tomography
8
synaptic density
8
arterial blood
8
blood sampling
8
arterial input
8

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

Background: Nitrogen (N) deposition has become a major driving factor affecting the balance of terrestrial ecosystems, changing the soil environment, element balance and species coexistence relationships, driving changes in biodiversity and ecosystem structure and function. Human-induced nitrogen input leads to a high NH/ NO ratio in soil. However, relatively few studies have investigated the effects of different nitrogen sources on forest plant-microbial symbionts.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) systems acquire images with spectral information over a wide range of wavelengths but are often affected by chromatic and other optical aberrations that degrade image quality. Deconvolution algorithms can improve the spatial resolution of HSI systems, yet retrieving the point spread function (PSF) is a crucial and challenging step. To address this challenge, we have developed a method for PSF estimation in HSI systems based on computed wavefronts.

View Article and Find Full Text PDF

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!