Quantum-dot cellular automata, is an extremely small size and a powerless nanotechnology. It is the possible alternative to current CMOS technology. Reversible QCA logic is the most important issue at present time to reduce power losses. This paper presents a novel reversible logic gate called the F-Gate. It is simplest in design and a powerful technique to implement reversible logic. A systematic approach has been used to implement a novel single layer reversible Full-Adder, Full-Subtractor and a Full Adder-Subtractor using the F-Gate. The proposed Full Adder-Subtractor has achieved significant improvements in terms of overall circuit parameters among the most previously cost-efficient designs that exploit the inevitable nano-level issues to perform arithmetic computing. The proposed designs have been authenticated and simulated using QCADesigner tool ver. 2.0.3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671476PMC
http://dx.doi.org/10.1016/j.dib.2017.10.011DOI Listing

Publication Analysis

Top Keywords

reversible logic
12
novel reversible
8
logic gate
8
systematic approach
8
approach implement
8
full adder-subtractor
8
logic
5
gate systematic
4
implement cost-efficient
4
cost-efficient arithmetic
4

Similar Publications

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Sepsis-Associated Cardiomyopathy: Long-Term Prognosis, Management, and Guideline-Directed Medical Therapy.

Curr Cardiol Rep

January 2025

Director, Cardiac Intensive Care Emory Heart & Vascular Center, Emory University School of Medicine, Atlanta, GA, USA.

Purpose Of Review: To explore the definitions of sepsis-induced cardiomyopathy and how that impacts interpretation of the available data and considerations of long-term prognosis and management.

Recent Findings: The field of sepsis-induced cardiomyopathy has been hampered by lack of consensus about its proper definition, with a great deal of heterogeneity in clinical trial data in both individual studies and meta-analyses and consequent disparity of estimates of incidence, prognosis, and clinical significance. New diagnostic techniques, while potentially shedding light on pathophysiology, have only exacerbated these challenges.

View Article and Find Full Text PDF

The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.

View Article and Find Full Text PDF

Contrasting two versions of the 4-cup 2-item disjunctive syllogism task in great apes.

Anim Cogn

January 2025

School of Psychology and Neuroscience, University of St. Andrews, St. Andrews, KY16 9AJ, UK.

Chimpanzees excel at inference tasks which require that they search for a single food item from partial information. Yet, when presented with 2-item tasks which test the same inference operation, chimpanzees show a consistent breakdown in performance. Here we test a diverse zoo-housed cohort (n = 24) comprising all 4 great ape species under the classic 4-cup 2-item task, previously administered to children and chimpanzees, and a modified task administered to baboons.

View Article and Find Full Text PDF

Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. Migrating mesenchymal cells form tissues that shape the body's organs. We developed a powerful model, exploring how nascent myotubes migrate onto the testis during pupal development, forming the muscles ensheathing it and creating its characteristic spiral shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!