The limiting factor in protein crystallography is still the production of high-quality crystals. In this regard, the authors have recently introduced hexatungstotellurate(VI) (TEW) as a new crystallization additive, which proved to be successful within the liquid-liquid phase separation (LLPS) zone. Presented here are comparative crystal structure analyses revealing that protein-TEW binding not only induces and stabilizes crystal contacts, but also exhibits a significant impact on the solvent-driven crystallization entropy, which is the driving force for the crystallization process. Upon the formation of TEW-mediated protein-protein contacts, the release of water molecules from the hydration shells of both molecules, TEW and the protein, causes a reduced solvent-accessible surface area, leading to a significant gain in solvent entropy. Based on the crystal structures of aurone synthase (in the presence and absence of TEW), insights have also been provided into the formation of a metastable LLPS, which is caused by the formation of protein clusters, representing an ideal starting point in protein crystallization. The results strongly encourage the classification of TEW as a valuable crystallization additive.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668858 | PMC |
http://dx.doi.org/10.1107/S2052252517012349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!