Establishment and phenotyping of disease model cells created by cell-resealing technique.

Sci Rep

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.

Published: November 2017

Cell-based assays are growing in importance for screening drugs and investigating their mechanisms of action. Most of the assays use so-called "normal" cell strain because it is difficult to produce cell lines in which the disease conditions are reproduced. In this study, we used a cell-resealing technique, which reversibly permeabilizes the plasma membrane, to develop diabetic (Db) model hepatocytes into which cytosol from diabetic mouse liver had been introduced. Db model hepatocytes showed several disease-specific phenotypes, namely disturbance of insulin-induced repression of gluconeogenic gene expression and glucose secretion. Quantitative image analysis and principal component analysis revealed that the ratio of phosphorylated Akt (pAkt) to Akt was the best index to describe the difference between wild-type and Db model hepatocytes. By performing image-based drug screening, we found pioglitazone, a PPARγ agonist, increased the pAkt/Akt ratio, which in turn ameliorated the insulin-induced transcriptional repression of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1. The disease-specific model cells coupled with image-based quantitative analysis should be useful for drug development, enabling the reconstitution of disease conditions at the cellular level and the discovery of disease-specific markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680332PMC
http://dx.doi.org/10.1038/s41598-017-15443-0DOI Listing

Publication Analysis

Top Keywords

model hepatocytes
12
model cells
8
cell-resealing technique
8
disease conditions
8
repression gluconeogenic
8
gluconeogenic gene
8
model
5
establishment phenotyping
4
phenotyping disease
4
disease model
4

Similar Publications

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Background & Aims: Hepatic insulin resistance is a fundamental phenomenon observed in both Type 2 diabetes (T2D) and metabolic (dysfunction) associated fatty liver disease (MAFLD). The relative contributions of nutrients, hyperinsulinemia, hormones, inflammation, and other cues are difficult to parse as they are convoluted by interplay between the local and systemic events. Here, we used a well-established human liver microphysiological system (MPS) to establish a physiologically-relevant insulin-responsive metabolic baseline and probe how primary human hepatocytes respond to controlled perturbations in insulin, glucose, and free fatty acids (FFAs).

View Article and Find Full Text PDF

Dynamic communication between hepatocytes and the environment is critical in hepatocellular carcinoma (HCC) development. Clinical immunotherapy against HCC is currently unsatisfactory and needs more systemic considerations, including the identification of new biomarkers and immune checkpoints. Transmembrane 4 L six family member 5 (TM4SF5) is known to promote HCC, but it remains unclear how cancerous hepatocytes avoid immune surveillance and whether avoidance can be blocked.

View Article and Find Full Text PDF

A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2-19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed.

View Article and Find Full Text PDF

The natural product-derived JM-9 alleviates high-fat diet-induced fatty liver in mice by targeting MD2.

Int Immunopharmacol

January 2025

Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035 Zhejiang, China; The Affiliated Cangnan Hospital and Chemical Biology Research Center, Wenzhou Medical University, Wenzhou 325035 Zhejiang, China. Electronic address:

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), is gradually emerging as one of the most prevalent liver diseases worldwide. Previous research demonstrated the involvement of myeloid differentiation factor 2 (MD2), a co-receptor of TLR4, as a key mediator in MASLD pathogenesis. The current study identifies JM-9 as a novel MD2 inhibitor, and focuses on evaluating its potential therapeutic effects in mitigating MASLD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!