Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry has been widely used for biomolecular analysis. However, with conventional MALDI, it is difficult to analyse low-molecular-weight compounds because of the interference of matrix ion signals. Here, we report a matrix-free on-chip pulse-heating desorption/ionization (PHDI) method for a wide range of biomolecules ranging from low molecular-weight substances such as glycine (75.7 Da) to large species such as α-lactalbumin (14.2 kDa). Compared with the conventional MALDI, the matrix-free PHDI method affords high yields of singly charged ions with very less fragmentation and background using only one-pulse without light (laser). We believe that this new technique for matrix-free biomolecules analysis would overcome the limitations of the conventional MALDI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680173 | PMC |
http://dx.doi.org/10.1038/s41598-017-15259-y | DOI Listing |
Indian J Med Microbiol
January 2025
Department of Nephrology, PSG Institute of Medical Sciences and Research, Coimbatore , India- 641004. Electronic address:
We report a rare case of Listeria ivanovii in elderly immunocompromised man with chronic kidney disease from South India, which was identified by conventional methods as well as MALDI-TOF and confirmed with 16S rRNA sequencing. In addition, literature search was done and the 10 cases of Listeria ivanovii infections reported earlier were discussed.
View Article and Find Full Text PDFAnalyst
January 2025
Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA.
Unlabelled: Rapid and accurate identification of cultured molds is important to determine clinical significance and therapeutic decision-making. Conventional mold identification uses phenotypic macroscopic and microscopic characterization; however, this can take days or weeks for colony maturity and definitive microscopic structure formation, be limited to genus-level identification, and be misidentified due to morphologic mimics or similarities between closely related species. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revolutionized bacterial and yeast identification but remains uncommon for molds in part because of limited reference libraries.
View Article and Find Full Text PDFVet Res Commun
January 2025
Faculty of Medical Technology, Prince of Songkla University, Songkhla, 90110, Thailand.
Staphylococcus pseudintermedius is a global animal pathogen. Traditional identification methods are time-consuming necessitating a more efficient approach. This study validated and enhanced the loop-mediated isothermal amplification (LAMP) technique by integration it with a lateral flow dipstick (LFD) assay for the detection of S.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
Rational: People are widely exposed to parabens in their daily life, but parabens are endocrine disrupting chemicals that pose a threat to human health. Therefore, establishing a rapid screening method to enhance monitoring of parabens is necessary. Herein, a covalent organic framework (COF) nanofilm-assisted laser desorption ionization mass spectrometry (LDI-MS) method was established to screen parabens in personal care products (PCPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!