Enhanced antimalalarial activity of a prolonged release in situ gel of arteether-lumefantrine in a murine model.

Eur J Pharm Biopharm

Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India. Electronic address:

Published: February 2018

The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) for treatment of falciparum malaria. Arteether (ART), an artemisinin derivative, is effective against Plasmodium falciparum, but it is available only as painful oily intramuscular (i.m.) injections. We formulated lyotropic liquid crystalline preconcentrates of ART and Lumefantrine (LUM) ACT with and without biodegradable polymer for antimalarial therapy. Following i.m. injection, both formed intact gels in situ due to rapid transition into liquid crystalline phase (LCP) which was confirmed by small angle neutron scattering (SANS), X-ray diffraction (XRD), polarization optical microscopy (POM) and rheological changes. Ex vivo release studies revealed prolong release of ART-LUM over 72 h from polymeric lyotropic liquid crystalline phases (P-LLCPr). In vitro hemolysis assay and myotoxicity studies confirmed intramuscular safety. Treatment with ART-LUM P-LLCPr conferred complete protection with no mortality at 1/40th of therapeutic dose in modified Peter's four-day suppressive test as compared to marketed ART formulation resulted in 100% mortality within 20 days. In the clinical simulation model, P-LLCPr treatment resulted in complete cure with no recrudescence or mortality at 1/20th of therapeutic dose, while marketed formulation which resulted in 100% mortality. The high efficacy with significantly reduced dose and a single administration with single shot therapy suggest ART-LUM P-LLCPr as a promising new patient friendly alternative for antimalarial therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2017.11.002DOI Listing

Publication Analysis

Top Keywords

liquid crystalline
12
lyotropic liquid
8
antimalarial therapy
8
art-lum p-llcpr
8
therapeutic dose
8
formulation 100%
8
100% mortality
8
enhanced antimalalarial
4
antimalalarial activity
4
activity prolonged
4

Similar Publications

Methyl side-groups control the 3̄ phase in core-non-symmetric aryloyl-hydrazine-based molecules.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.

Control of the formation of liquid crystalline 3̄ gyroid phases and their nanostructures is critical to advance materials chemistry based on the structural feature of three-dimensional helical networks. Here, we present that introducing methyl side-group(s) and slight non-symmetry into aryloyl-hydrazine-based molecules is unexpectedly crucial for their formation and can be a new design strategy through tuning intermolecular interactions: the two chemical modifications in the core portion of the chain-core-chain type molecules effectively lower and extend the 3̄ phase temperature ranges with the increased twist angle between neighboring molecules along the network. The detailed analyses of the aggregation structure revealed the change in the core assembly mode from the double-layered core mode of the mother molecule (without methyl groups) to the single-layered core mode.

View Article and Find Full Text PDF

In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.

View Article and Find Full Text PDF

This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.

View Article and Find Full Text PDF

Novel Nonaqueous PD/PZ/NMP Absorbent for Energy-Efficient CO Capture: Insights into the Crystal-Phase Regulation Mechanism of the Powdery Product.

Environ Sci Technol

January 2025

School of Environmental Science and Engineering, Shenzhen Key Laboratory of Municipal Solid Waste Recycling Technology and Management, Southern University of Science and Technology, Shenzhen 518055, China.

Solid-liquid biphasic absorbents are a promising solution for overcoming the high-energy consumption challenge faced by liquid amine-based CO capture technologies. However, their practical applications are often hindered by difficulties in separating viscous solid-phase products. This study introduces a novel nonaqueous absorbent system (PD/PZ/NMP) composed of 4-amino-1-methylpiperidine (PD), piperazine (PZ), and -methyl-2-pyrrolidone (NMP), engineered to produce easily separable powdery products.

View Article and Find Full Text PDF

Liquid crystals (LCs) are widely used as promising stimuli-responsive materials due to their unique combination of liquid and crystalline properties, providing the capability to sense even molecular-scale events and amplify them into macroscopic optical outputs. However, encoding a high level of selectivity to a specific intermolecular event remains a key challenge, leading to prior studies regarding chemically functionalized LC interfaces. Herein, we propose an integrative strategy to significantly advance the design of chemo-responsive LCs through a deep fundamental understanding on the orientational coupling of LCs with new functional molecules, organic ionic plastic crystals (OIs), presented at LC interfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!