Unlabelled: Ubiquitylation is an important posttranslational protein modification that is involved in many cellular events. Immunopurification of peptides containing a K-ε-diglycine (diGly) remnant as a mark of ubiquitylation combined with mass spectrometric detection has resulted in an explosion of the number of identified ubiquitylation sites. Here, we present several significant improvements to this workflow, including fast, offline and crude high pH reverse-phase fractionation of tryptic peptides into only three fractions with simultaneous desalting prior to immunopurification and better control of the peptide fragmentation settings in the Orbitrap HCD cell. In addition, more efficient sample cleanup using a filter plug to retain the antibody beads results in a higher specificity for diGly peptides and less non-specific binding. These relatively simple modifications of the protocol result in the routine detection of over 23,000 diGly peptides from HeLa cells upon proteasome inhibition. The efficacy of this strategy is shown for lysates of both non-labeled and SILAC labeled cell lines. Furthermore, we demonstrate that this strategy is useful for the in-depth analysis of the endogenous, unstimulated ubiquitinome of in vivo samples such as mouse brain tissue. This study presents a valuable addition to the toolbox for ubiquitylation site analysis to uncover the deep ubiquitinome.
Significance: A K-ε-diglycine (diGly) mark on peptides after tryptic digestion of proteins indicates a site of ubiquitylation, a posttranslational modification involved in a wide range of cellular processes. Here, we report several improvements to methods for the isolation and detection of diGly peptides from complex biological mixtures such as cell lysates and brain tissue. This adapted method is robust, reproducible and outperforms previously published methods in terms of number of modified peptide identifications from a single sample. In-depth analysis of the ubiquitinome using mass spectrometry will lead to a better understanding of the roles of protein ubiquitylation in cellular events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2017.10.014 | DOI Listing |
Methods Mol Biol
October 2024
National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland.
Ubiquitination is one of the most important post-translational modifications (PTMs) and involves the covalent attachment of ubiquitin to a lysine residue on a target protein. Despite ubiquitination playing a crucial role in regulating cellular processes, the ubiquitinated proteome has not been studied extensively in recombinant Chinese hamster ovary (CHO) cells. Moreover, ubiquitination modification in CHO cells is likely to have an impact on protein function related to the efficient productivity of biopharmaceuticals.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
Ubiquitylation is a structurally and functionally diverse post-translational modification that involves the covalent attachment of the small protein ubiquitin to other protein substrates. Trypsin-based proteomics is the most common approach for globally identifying ubiquitylation sites. However, we estimate that such methods are unable to detect ∼40% of ubiquitylation sites in the human proteome, , "the dark ubiquitylome", including many important for human health and disease.
View Article and Find Full Text PDFUbiquitylation is a structurally and functionally diverse post translational modification that involves the covalent attachment of the small protein ubiquitin to other protein substrates. Trypsin-based proteomics is the most common approach for globally identifying ubiquitylation sites. However, we estimate that such methods are unable to detect ~40% of ubiquitylation sites in the human proteome - i.
View Article and Find Full Text PDFJ Agric Food Chem
May 2024
Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States.
Amadori rearrangement products (ARPs) are gaining more attention for their potential usage in the food flavor industry. Peptide-ARPs have been studied, but pyrazinones that were theoretically found in the Maillard reaction (MR) have not been reported to be formed from small peptide-ARPs. This study found four pyrazinones: 1-methyl-, 1,5-dimethyl-, 1,6-dimethyl-, and 1,5,6-trimethyl-2(1)-pyrazinones in both MR and ARP systems.
View Article and Find Full Text PDFJ Agric Food Chem
January 2024
Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States.
Amadori rearrangement products (ARPs), as intermediates of the Maillard reaction (MR), are potential natural flavor additives but there is a lack of investigation especially in oligopeptide-ARPs. This study for the first time conducted a systematic analysis in comparing ARPs of glycine, diglycine, triglycine, and glucose to corresponding classic MR systems, including production, stability, and flavor analysis. The ARPs were effectively produced by prelyophilization with heating at 70 °C for 60 min and purified to 96% by a two-step purification method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!