Regulation of Seed Vigor by Manipulation of Raffinose Family Oligosaccharides in Maize and Arabidopsis thaliana.

Mol Plant

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; The Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Published: December 2017

Raffinose family oligosaccharides (RFOs) accumulate in seeds during maturation desiccation in many plant species. However, it remains unclear whether RFOs have a role in establishing seed vigor. GALACTINOL SYNTHASE (GOLS), RAFFINOSE SYNTHASE (RS), and STACHYOSE SYNTHASE (STS) are the enzymes responsible for RFO biosynthesis in plants. Interestingly, only raffinose is detected in maize seeds, and a unique maize RS gene (ZmRS) was identified. In this study, we found that two independent mutator (Mu)-interrupted zmrs lines, containing no raffinose but hyperaccumulating galactinol, have significantly reduced seed vigor, compared with null segregant controls. Unlike maize, Arabidopsis thaliana seeds contain several RFOs (raffinose, stachyose, and verbascose). Manipulation of A. thaliana RFO content by overexpressing ZmGOLS2, ZmRS, or AtSTS demonstrated that co-overexpression of ZmGOLS2 and ZmRS, or overexpression of ZmGOLS2 alone, significantly increased the total content of RFOs and enhanced Arabidopsis seed vigor. Surprisingly, while overexpression of ZmRS increased seed raffinose content, its overexpression dramatically decreased seed vigor and reduced the seed amounts of galactinol, stachyose, and verbascose. In contrast, the atrs5 mutant seeds are similar to those of the wild type with regard to seed vigor and RFO content, except for stachyose, which accumulated in atrs5 seeds. Total RFOs, RFO/sucrose ratio, but not absolute individual RFO amounts, positively correlated with A. thaliana seed vigor, to which stachyose and verbascose contribute more than raffinose. Taken together, these results provide new insights into regulatory mechanisms of seed vigor and reveal distinct requirement for RFOs in modulating seed vigor in a monocot and a dicot.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2017.10.014DOI Listing

Publication Analysis

Top Keywords

seed vigor
36
stachyose verbascose
12
seed
10
vigor
9
raffinose
8
raffinose family
8
maize arabidopsis
8
arabidopsis thaliana
8
reduced seed
8
zmgols2 zmrs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!