Recent studies illustrate that fungi as virus hosts provides a unique platform for hunting viruses and exploring virus/virus and virus/host interactions. Such studies have revealed a number of as-yet-unreported viruses and virus/virus interactions. Among them is a unique intimate relationship between a (+)ssRNA virus, yado-kari virus (YkV1) and an unrelated dsRNA virus, yado-nushi virus (YnV1). YkV1 dsRNA, a replicated form of YkV1, and RNA-dependent RNA polymerase, are trans-encapsidated by the capsid protein of YnV1. While YnV1 can complete its replication cycle, YkV1 relies on YnV1 for its viability. We previously proposed a model in which YkV1 diverts YnV1 capsids as the replication sites. YkV1 is neither satellite virus nor satellite RNA, because YkV1 appears to encode functional RdRp and enhances YnV1 accumulation. This represents a unique mutualistic virus/virus interplay and similar relations in other virus/host fungus systems are detectable. We propose to establish the family Yadokariviridae that accommodates YkV1 and recently discovered viruses phylogenetically related to YkV1. This article overviews what is known and unknown about the YkV1/YnV1 interactions. Also discussed are the YnV1 Phytoreo_S7 and YkV1 2A-like domains that may have been captured via horizontal transfer during the course of evolution and are conserved across extant diverse RNA viruses. Lastly, evolutionary scenarios are envisioned for YkV1 and YnV1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2017.11.006 | DOI Listing |
mBio
October 2022
Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan.
We have previously discovered a virus neo-lifestyle exhibited by a capsidless positive-sense (+), single-stranded (ss) RNA virus YkV1 (family ) and an unrelated double-stranded (ds) RNA virus YnV1 (proposed family "") in a phytopathogenic ascomycete, . YkV1 has been proposed to replicate in the capsid provided by YnV1 as if it were a dsRNA virus and enhance YnV1 replication in return. Recently, viruses related to YkV1 (yadokariviruses) have been isolated from diverse ascomycetous fungi.
View Article and Find Full Text PDFJ Virol
August 2021
Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama Universitygrid.261356.5, Kurashiki, Okayama, Japan.
We previously proposed a new virus lifestyle or yadokari/yadonushi nature exhibited by a positive-sense single-stranded RNA (ssRNA) virus, yadokari virus 1 (YkV1), and an unrelated double-stranded RNA (dsRNA) virus, yadonushi virus 1 (YnV1) in a phytopathogenic ascomycete, Rosellinia necatrix. We have proposed that YkV1 diverts the YnV1 capsid to -encapsidate YkV1 RNA and RNA-dependent RNA polymerase (RdRp) and replicate in the heterocapsid. However, it remains uncertain whether YkV1 replicates using its own RdRp and whether YnV1 capsid copackages both YkV1 and YnV1 components.
View Article and Find Full Text PDFVirus Res
January 2018
Institute of Plant Science and Resources (IPSR), Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan. Electronic address:
Recent studies illustrate that fungi as virus hosts provides a unique platform for hunting viruses and exploring virus/virus and virus/host interactions. Such studies have revealed a number of as-yet-unreported viruses and virus/virus interactions. Among them is a unique intimate relationship between a (+)ssRNA virus, yado-kari virus (YkV1) and an unrelated dsRNA virus, yado-nushi virus (YnV1).
View Article and Find Full Text PDFNat Microbiol
January 2016
Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan.
Viruses typically encode the capsid that encases their genome, while satellite viruses do not encode a replicase and depend on a helper virus for their replication(1). Here, we report interplay between two RNA viruses, yado-nushi virus 1 (YnV1) and yado-kari virus 1 (YkV1), in a phytopathogenic fungus, Rosellinia necatrix(2). YkV1 has a close phylogenetic affinity to positive-sense, single-stranded (+)ssRNA viruses such as animal caliciviruses(3), while YnV1 has an undivided double-stranded (ds) RNA genome with a resemblance to fungal totiviruses(4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!