Strong sonic hedgehog signaling in the mouse ventral spinal cord is not required for oligodendrocyte precursor cell (OPC) generation but is necessary for correct timing of its generation.

Neurochem Int

Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan. Electronic address:

Published: October 2018

In the mouse neural tube, sonic hedgehog (Shh) secreted from the floor plate (FP) and the notochord (NC) regulates ventral patterning of the neural tube, and later is essential for the generation of oligodendrocyte precursor cells (OPCs). During early development, the NC is adjacent to the neural tube and induces ventral domains in it, including the FP. In the later stage of development, during gliogenesis in the spinal cord, the pMN domain receives strong Shh signaling input. While this is considered to be essential for the generation of OPCs, the actual role of this strong input in OPC generation remains unclear. Here we studied OPC generation in bromi mutant mice which show abnormal ciliary structure. Shh signaling occurs within cilia and has been reported to be weak in bromi mutants. At E11.5, accumulation of Patched1 mRNA, a Shh signaling reporter, is observed in the pMN domain of wild type but not bromi mutants, whereas expression of Gli1 mRNA, another Shh reporter, disappeared. Thus, Shh signaling input to the pMN domain at E12.5 was reduced in bromi mutant mice. In these mutants, induction of the FP structure was delayed and its size was reduced compared to wild type mice. Furthermore, while the p3 and pMN domains were induced, the length of the Nkx2.2-positive region and the number of Olig2-positive cells decreased. The number of OPCs was also significantly decreased in the E12.5 and E14.5 bromi mutant spinal cord. In contrast, motor neuron (MN) production, detected by HB9 expression, significantly increased. It is likely that the transition from MN production to OPC generation in the pMN domain is impaired in bromi mutant mice. These results suggest that strong Shh input to the pMN domain is not required for OPC generation but is essential for producing a sufficient number of OPCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2017.11.003DOI Listing

Publication Analysis

Top Keywords

opc generation
20
pmn domain
20
shh signaling
16
bromi mutant
16
spinal cord
12
neural tube
12
mutant mice
12
sonic hedgehog
8
oligodendrocyte precursor
8
generation
8

Similar Publications

The mammalian nervous system controls complex functions through highly specialized and interacting structures. Single-cell sequencing can provide information on cell-type-specific chromatin structure and regulatory elements, revealing differences in chromatin organization between different cell types and their potential roles of these differences in brain function. Here, we generated a chromatin accessibility dataset through single-cell ATAC-seq of 174,593 high-quality nuclei from 16 adult rat brain regions.

View Article and Find Full Text PDF

Tuberculosis vaccines and therapeutic drug: challenges and future directions.

Mol Biomed

January 2025

Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.

Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research.

View Article and Find Full Text PDF

Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes.

View Article and Find Full Text PDF

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

Purpose: Radiotherapy (RT) for oropharyngeal cancer (OPC) can lead to late toxicity. Fatigue is a known debilitating issue for many cancer survivors, yet prevalence and severity of long-term fatigue in patients treated for OPC is unknown.

Method: As part of a mixed-methods study, fatigue in OPC patients ≥ 2 years post RT + / - chemotherapy was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!