A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila. | LitMetric

Chronic low-dose pro-oxidant treatment stimulates transcriptional activity of telomeric retroelements and increases telomere length in Drosophila.

J Insect Physiol

Institute of Entomology, Biology Centre AS CR, České Budějovice 37005, Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic. Electronic address:

Published: January 2018

It has been proposed that oxidative stress, elicited by high levels of reactive oxygen species, accelerates telomere shortening by erosion of telomeric DNA repeats. While most eukaryotes counteract telomere shortening by telomerase-driven addition of these repeats, telomeric loss in Drosophila is compensated by retrotransposition of the telomeric retroelements HeT-A, TART and TAHRE to chromosome ends. In this study we tested the effect of chronic exposure of flies to non-/sub-lethal doses of paraquat, which is a redox cycling compound widely used to induce oxidative stress in various experimental paradigms including telomere length analyses. Indeed, chronic paraquat exposure for five generations resulted in elevated transcriptional activity of both telomeric and non-telomeric transposable elements, and extended telomeric length in the tested fly lines. We propose that low oxidative stress leads to increased telomere length within Drosophila populations. For a mechanistic understanding of the observed phenomenon we discuss two scenarios: adaption, acting through a direct stimulation of telomere extension, or positive selection favoring individuals with longer telomeres within the population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2017.11.002DOI Listing

Publication Analysis

Top Keywords

telomere length
12
oxidative stress
12
transcriptional activity
8
activity telomeric
8
telomeric retroelements
8
length drosophila
8
telomere shortening
8
telomeric
6
telomere
6
chronic low-dose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!