A study of 2-component i, i + 3 peptide stapling using thioethers.

Bioorg Med Chem

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Electronic address:

Published: March 2018

AI Article Synopsis

  • Peptides can be used as potential therapeutics for targeting hard-to-drug interactions, but they often face issues like lack of structure and quick breakdown in cells.
  • Stapling peptides can stabilize their helical structure and improve their resistance to degradation, but most research has focused on certain spacing patterns of amino acids, leaving the i, i + 3 spacing underexplored.
  • This study evaluated different linkers for stapling i, i + 3 residues, finding that this method significantly increases the peptides' resistance to proteolysis compared to other methods, thus enhancing the utility of peptide stapling.

Article Abstract

Peptides are promising scaffolds for use as therapeutics, targeting interactions previously considered to be "undruggable" by small molecules. While short peptides are generally unstructured in solution and rapidly degraded by proteases in the cell cytosol, peptide stapling offers an effective method to both stabilize peptides in a helical structure and increase resistance to proteolytic degradation. Most studies of peptide stapling have focused on residues with i, i + 4 and i, i + 7 spacing, while stapling of residues with i, i + 3 spacing has been understudied. Herein, we evaluated a suite of bifunctional linkers for stapling between residues with i, i + 3 spacing, comparing the ability of each compound to react with the peptide and the degree of helicity conferred. Finally, we evaluated the ability of the stapling to increase proteolytic resistance in cell lysates, comparing stapling of i, i + 3 and i, i + 4 spacing, with i, i + 3 spacing resulting in a greater increase in peptide half-life in the model system. This presents an effective stapling strategy, adding to the peptide stapling toolbox.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2017.10.037DOI Listing

Publication Analysis

Top Keywords

peptide stapling
16
i + 3 spacing
12
stapling
9
stapling residues
8
residues i + 3
8
peptide
6
i + 3
5
spacing
5
study 2-component
4
2-component i + 3
4

Similar Publications

Peptide-Bismuth Tricycles: Maximizing Stability by Constraint.

Chemistry

January 2025

Australian National University, Research School of Chemistry, Sullivans Creek Road, ACT 2601, Canberra, AUSTRALIA.

Constrained peptides possess excellent properties for identifying lead compounds in drug discovery. While it has become increasingly straightforward to discover selective high-affinity peptide ligands, especially through genetically encoded libraries, their stability and bioavailability remain significant challenges. By integrating macrocyclization chemistry with bismuth binding, we generated series of linear, cyclic, bicyclic, and tricyclic peptides with identical sequences.

View Article and Find Full Text PDF

Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.

View Article and Find Full Text PDF

Macrocyclization or stapling is an important strategy for increasing the conformational stability and target-binding affinity of peptides and proteins, especially in therapeutic contexts. Atomistic simulations of such stapled peptides and proteins could help rationalize existing experimental data and provide predictive tools for the design of new stapled peptides and proteins. Standard approaches exist for incorporating nonstandard amino acids and functional groups into the force fields required for MD simulations and have been used in the context of stapling for more than a decade.

View Article and Find Full Text PDF

Tyrosinase-Catalyzed Peptide Stapling Using para-Amino Phenylalanine and Tyrosine Anchoring Residues.

Angew Chem Int Ed Engl

January 2025

Second Military Medical University, School of Pharmacy, 325 Guohe Road, 200433, Shanghai, CHINA.

Peptide stapling techniques have historically relied on metal-catalyzed chemical reactions, with no examples using enzymes. Here, inspired by tyrosinase-mediated oxidation, we describe the efficient side-chain to side-chain coupling of p-amino phenylalanine (Z) and tyrosine (Y) amino acids using a commercially available tyrosinase. Stapling reactions between the i, i+3 to i, i+7 positions were all performed, proceeding in good conversion and under mild conditions compatible with various side chains, functional motifs and ring sizes, with the Z-Y product found to be more stable and obtained in a higher yield than the Y-Z product.

View Article and Find Full Text PDF

Short-length peptides are used as therapeutics due to their high target specificity and low toxicity; for example, peptides are designed for targeting the interaction between oncogenic protein p53 and E3 ubiquitin ligase MDM2. These peptide therapeutics form a class of successful inhibitors. To design such peptide-based inhibitors, stapling is one of the methods in which amino acid side chains are stitched together to get conformationally rigid peptides, ensuring effective binding to their partners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!