Several methods have been developed to evaluate spermatozoa function in birds but many of these are sometimes complicated, costly and not applicable to field studies (i.e., performed within poultry breeding facilities). The objective was, therefore, to validate efficient, practical and inexpensive procedures to determine DNA fragmentation, acrosomal integrity, and mitochondrial activity in poultry spermatozoa. Initially, ejaculates were individually diluted and divided into control (4°C, 4h) and UV-irradiated aliquots (room temperature, 4h), and then samples containing different percentages of DNA-damaged spermatozoa (0%, 25%, 50%, 75% and 100%) were subjected to Toluidine Blue (TB) and Sperm Chromatin Dispersion assessments (SCD). Fast Green-Rose Bengal (FG-RB) and FITC-PSA staining protocols were subsequently used to assess acrosome status in aliquots comprising assorted amounts of acrosome-reacted spermatozoa. Furthermore, to validate 3,3'-diaminobenzidine (DAB) assay, ejaculates containing different gradients of spermatozoa with great amounts of mitochondrial activity were concurrently evaluated using DAB and JC-1 stains. The proportion of spermatozoa with abnormal DNA integrity when evaluated using the TB assessment correlated significantly with the expected percentages of UV-irradiated spermatozoa and with SCD results. A significant linear regression coefficient was also observed between expected amounts of acrosome-intact spermatozoa and FG-RB readings, and there was a significant correlation of the data when FG-RB and FITC-PSA were used. Likewise, the use of the DAB assay enabled for accurately ascertaining percentages of rooster spermatozoa with greater and lesser mitochondrial function, and results were highly correlated to results with staining with JC-1. Altogether, findings of the present study indicate acrosomal status, DNA integrity and mitochondrial activity in rooster spermatozoa can be easily and reliably determined using FG-RB, TB and DAB stains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anireprosci.2017.10.017 | DOI Listing |
Cell Death Differ
December 2024
Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., USA.
Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.
View Article and Find Full Text PDFJ Biol Inorg Chem
December 2024
Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA.
The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
December 2024
Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe Shosse 34, 115522, Moscow, Russia.
Previously we found altered microglia-neuron interactions in the prefrontal cortex in schizophrenia. We hypothesized that microglia-neuron interactions may be dysregulated in the caudate nucleus in schizophrenia. A postmortem ultrastructural morphometric study was performed to investigate satellite microglia (SatMg) and adjacent neurons in the head of the caudate nucleus in 21 cases of schizophrenia and 20 healthy controls.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, China.
Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention for their roles in cancer progression and therapy resistance. Despite this, the functional diversity of mitochondria across various cancer types remains inadequately characterized. This study seeks to fill this knowledge gap by introducing and validating MitoScore-a novel metric designed to quantitatively assess mitochondrial function across a wide array of cancers.
View Article and Find Full Text PDFSci Rep
December 2024
School of Basic Medicine, Dali University, Dali, 671003, Yunnan, China.
Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!