Unlabelled: Increased acetataemia during haemodialysis sessions has been associated with a number of abnormalities, including increased oxidative stress, pro-inflammatory cytokines and nitric oxide synthesis. However, citric acid may play an alternative role to acetate as a dialysate stabiliser given that the effect of citrate on complement and leukocyte activation is different to that of acetate. The purpose of this study was to compare the inflammatory effect in immunocompetent blood cells of acetate dialysate and citrate dialysate.

Material And Methods: The effect of acetate and/or citrate was investigated in the whole blood of uraemic patients and in healthy in vitro samples. Four types of dialysate were tested: dialysate 1, acetate-free with 1mmol/L of citrate; dialysate 2, with 0.8mmol/L of citrate and 0.3mmol/L of acetate; dialysate 3, citrate-free with 3mmol/L of acetate; and dialysate 4, citrate-free with 4mmol/L of acetate. The cell types used were: human monocyte culture (THP-1); and peripheral blood mononuclear cells (PBMCs) from healthy subjects and uraemic patients on haemodialysis. ICAM-1 was determined and levels of reactive oxygen species and total microvesicles were quantified.

Results: Unlike the citrate dialysates, the dialysates with acetate (dialysate 3 and dialysate 4) induced increased ICAM-1 expression density in THP-1 cells; an increase in ICAM-1 expression was observed in the immunocompetent cells of healthy subjects with acetate dialysate (dialysate 3 and dialysate 4) but not with citrate dialysate (dialysate 1 and dialysate 2). No significant ICAM-1 differences were found between the different dialysates in the cells of haemodialysed patients. Reactive oxygen species expression and the number of microvesicles increased significantly with acetate dialysate but not with citrate dialysate in the cells of both healthy subjects and haemodialysed patients.

Conclusions: At the concentrations in which it is generally used in clinical practice, acetate-based dialysate increases oxidative stress and the total number of microvesicles and may induce other pro-inflammatory stimuli typical of uraemic patients on haemodialysis. Citrate dialysates do not induce this activation, which could make them a suitable alternative in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nefro.2017.03.024DOI Listing

Publication Analysis

Top Keywords

acetate dialysate
32
dialysate dialysate
20
dialysate
19
citrate dialysate
16
oxidative stress
12
dialysate citrate
12
uraemic patients
12
healthy subjects
12
acetate
11
citrate
10

Similar Publications

The objective of this scoping review was to answer the question, "What has been published describing drug dosing in sustained low-efficiency dialysis (SLED)?" PubMed, Embase, and Scopus were searched on November 18, 2022. Methodology followed the Arksey and O'Malley framework for scoping reviews and Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. Two investigators independently screened abstracts and full-texts of citations identified related to drug dosing and SLED.

View Article and Find Full Text PDF

[Differences in components and anti-inflammatory and analgesic activities of two phase states of Wuzhuyu Decoction].

Zhongguo Zhong Yao Za Zhi

November 2024

School of Traditional Chinese Medicine, Capital Medical University Beijing 100069, China Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research Beijing 100069, China.

This study rapidly identified and quantified the chemical components of the Wuzhuyu Decoction nanophase(WZYD-N) and suspension phase(WZYD-S) using ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry(UPLC-QQQ-MS/MS). Based on preliminary pharmacodynamic experiments and network pharmacology analysis, the differential anti-inflammatory and analgesic activities of WZYD-N and WZYD-S were explored to understand their pharmacodynamic basis. WZYD-N and WZYD-S were separated by differential centrifugation-dialysis, and their particle size, Zeta potential, PDI, and morphology were characterized by dynamic light scattering and transmission electron microscopy.

View Article and Find Full Text PDF

Gut microbiota regulates oxidative stress and inflammation: a double-edged sword in renal fibrosis.

Cell Mol Life Sci

December 2024

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, 310053, Zhejiang, China.

Gut microbiota is a complex and dynamic system that plays critical roles in human health and various disease. Progressive chronic kidney disease (CKD) suggests that patients irreversibly progress to end-stage kidney disease and need renal replacement treatments, including dialysis and transplantation. Ample evidence indicates that local oxidative stress and inflammation play pivotal roles in the pathogenesis and progression of CKD and dysbiosis of gut microbiota.

View Article and Find Full Text PDF
Article Synopsis
  • Hemodialysis patients often experience left ventricular hypertrophy (LVH), and this study investigates the link between the increased uremic toxin indole-3-acetic acid (IAA) and LVH.
  • 205 hemodialysis patients were analyzed, with findings indicating that those with LVH had higher IAA and phosphate levels, as well as lower hemoglobin levels.
  • Results show that elevated IAA levels are positively associated with LVH, indicating that IAA might be a new biomarker for predicting LVH risk in these patients.
View Article and Find Full Text PDF

This review aimed to summarize the current literature on antibiotic distribution in orthopedically relevant tissues and settings where dynamic sampling methods have been used. PubMed and Embase databases were systematically searched. English-published studies between 2004 and 2024 involving systemic antibiotic administration in orthopedically relevant tissues and settings based on dynamic measurements were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!