Background: Difficulty turning over in bed is a common night-time symptom in Parkinson's disease (PD). We aimed to quantitatively evaluate overnight turnover movements using a three-axis accelerometer and to investigate whether inability to turn in bed is related to daytime sleepiness, sleep quality, and depressive mood in PD patients.
Methods: We examined 64 patients with PD (mean age, 73.3±8.21 years; modified Hoehn-Yahr [mH-Y] stage, 3.0±1.0; disease duration, 7.2±6.3 years; unified Parkinson's disease rating scale [UPDRS], 36.9±18.3). Overnight monitoring of turnover movements using a wearable three-axis accelerometer was performed in all patients. Nocturnal kinetic parameters including total time recumbent, total time supine, number of turnover movements, and mean interval between turnover movements were obtained. Daytime immobility was assessed using the Barthel index (B-I), UPDRS, and mH-Y stage. Patients were also assessed with the Epworth Sleepiness Scale (ESS), Parkinson's Disease Sleep Scale-2 (PDSS-2), and Beck Depression Inventory (BDI).
Results: Number of turnover movements in bed correlated negatively with disease duration (r = -0.305; p<0.05), L-dopa-equivalent dose (r = -0.281; p<0.05), mH-Y staging (r = -0.336; p<0.01), total score of UPDRS (r = -0.386; p<0.01) and positively with B-I score (r = 0.365; p<0.01). Number of turnover movements in bed was generally inconsistent with awareness of turnover movement impairment as evaluated by PDSS-2 Item 9 scores, but patients who were never aware of impaired turnover movements showed ≥5 turnover movements overnight. Multivariate logistic regression analyses revealed no correlations between number of nocturnal turnover movements in bed and BDI, ESS, or PDSS-2. Use of anti-psychotic drugs was associated with ESS (p = 0.045). UPDRS was associated with PDSS-2 (p = 0.016).
Conclusion: Decreased number of turnover movements may not be a direct determinant of daytime sleepiness, sleep disorders, or depressive mood in PD patients. Use of anti-psychotic drugs and higher UPDRS score are factors significantly associated with daytime sleepiness and uncomfortable sleep, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5679594 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187616 | PLOS |
Nutrients
December 2024
Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
Background: Anabolic resistance accelerates muscle loss in aging and obesity, thus predisposing to sarcopenic obesity.
Methods: In this retrospective analysis of a randomized clinical trial, we examined baseline predictors of the adaptive response to three months of home-based resistance exercise, daily physical activity, and protein-based, multi-ingredient supplementation (MIS) in a cohort of free-living, older males ( = 32).
Results: Multiple linear regression analyses revealed that obesity and a Global Risk Index for metabolic syndrome (MetS) were the strongest predictors of Δ% gains in lean mass (TLM and ASM), LM/body fat ratios (TLM/%BF, ASM/FM, and ASM/%BF), and allometric LM (ASMI, TLM/BW, TLM/BMI, ASM/BW), with moderately strong, negative correlations to the adaptive response to polytherapy r = -0.
Biol Sport
January 2025
Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany.
Despite the development of various motor learning models over many decades, the question of which model is most effective under which conditions to optimize the acquisition of skills remains a heated and recurring debate. This is particularly important in connection with learning sports movements with a high strength component. This study aims to examine the acute effects of various motor learning models on technical efficiency and force production during the Olympic snatch movement.
View Article and Find Full Text PDFWater Res
December 2024
Research group BioGeoOmics, Department of Environmental Analytical Chemistry, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany.
Dissolved organic matter (DOM) present in surface aquatic systems is a heterogeneous mixture of organic compounds reflecting its allochthonous and autochthonous organic matter (OM) sources. The composition of DOM is determined by environmental factors like land use, water chemistry, and climate, which influence its release, movement, and turnover in the ecosystem. However, studying the impact of these environmental factors on DOM composition is challenging due to the dynamic nature of the system and the complex interactions of multiple environmental factors involved.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Marine Science, University of Otago, Dunedin, New Zealand.
What little we know about how microbiomes change over the course of host dispersal has been gleaned from simulations or snapshot sampling of microbiomes of hosts undertaking regular, cyclical migrations. These studies suggest that major changes in both microbiome richness and turnover occur in response to long-distance movements, but we do not yet know how rare or sporadic dispersal events for non-migratory organisms might affect the microbiomes of their hosts. Here we directly examine the microbiomes of rafting seaweed, leveraging host genomic analyses, amplicon sequencing, and oceanographic modelling to study the impacts of ecological dispersal of hosts on their microbiomes.
View Article and Find Full Text PDFArch Osteoporos
December 2024
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Unlabelled: This study examines how power training affects estimated bone strength, revealing that females benefit more than males, especially in the upper limbs (radius). These findings highlight the importance of designing sex-specific exercise programs to enhance bone health. Further research is needed to optimize training duration and address site-specific differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!