Biomechanical Methods to Quantify Muscle Effort During Resistance Exercise.

J Strength Cond Res

Neuromusculoskeletal Mechanics Research Program, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada.

Published: February 2018

Chiu, LZF. Biomechanical methods to quantify muscle effort during resistance exercise. J Strength Cond Res 32(2): 502-513, 2018-Muscle hypertrophy and strength adaptations elicited by resistance training are dependent on the force exerted by active muscles. As an exercise may use many muscles, determining force for individual muscles or muscle groupings is important to understand the relation between an exercise and these adaptations. Muscle effort-the amount of force or a surrogate measure related to the amount of force exerted during a task-can be quantified using biomechanical methods. The purpose of this review was to summarize the biomechanical methods used to estimate muscle effort in movements, particularly resistance training exercises. These approaches include the following: (a) inverse dynamics with rigid body models, (b) forward dynamics and EMG-driven models, (c) normalized EMG, and (d) inverse dynamics with point-mass models. Rigid body models quantify muscle effort as net joint moments. Forward dynamics and EMG-driven models estimate muscle force as well as determine the effect of a muscle's action throughout the body. Nonlinear relations between EMG and muscle force and normalization reference action selection affect the usefulness of EMG as a measure of muscle effort. Point-mass models include kinetics calculated from barbell (or other implement) kinematics recorded using electromechanical transducers or measured using force platforms. Point-mass models only allow the net force exerted on the barbell or lifter-barbell system to be determined, so they cannot be used to estimate muscle effort. Data from studies using rigid body models, normalized EMG, and musculoskeletal modeling should be combined to develop hypotheses regarding muscle effort; these hypotheses should be verified by training interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1519/JSC.0000000000002330DOI Listing

Publication Analysis

Top Keywords

muscle effort
28
biomechanical methods
16
quantify muscle
12
force exerted
12
estimate muscle
12
rigid body
12
body models
12
point-mass models
12
muscle
11
methods quantify
8

Similar Publications

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Myostatin is a paracrine myokine that regulates muscle mass in a variety of species, including humans. In this work, we report a functional role for myostatin as an endocrine hormone that directly promotes pituitary follicle-stimulating hormone (FSH) synthesis and thereby ovarian function in mice. Previously, this FSH-stimulating role was attributed to other members of the transforming growth factor-β family, the activins.

View Article and Find Full Text PDF

Background: Calf muscle weakness is a common symptom in slowly progressive neuromuscular disorders that lead to walking problems like instability and increased walking effort. The mainstay of treatment to improve walking in this population is the provision of ankle-foot-orthoses (AFOs). Since we are not aware of an up-to-date and complete overview of the effects of AFOs used for calf muscle weakness in slowly progressive neuromuscular disorders, we reviewed the evidence for the effectiveness of AFOs to improve walking in this patient group, in order to support clinical decision-making.

View Article and Find Full Text PDF

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts.

View Article and Find Full Text PDF

The study aimed to verify the physiological and metabolic parameters associated with the time to task failure (TTF) during cycling exercise performed within the severe-intensity domain. Forty-five healthy and physically active males participated in two independent experiments. In experiment 1, after a graded exercise test, participants underwent constant work rate cycling efforts (CWR) at 115% of peak power output to assess neuromuscular function (Potentiated twitch) pre- and post-exercise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!