Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe Sb compounds.

J Phys Condens Matter

The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020, United States of America.

Published: December 2017

Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, [Formula: see text]  =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions [Formula: see text]. Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions [Formula: see text] lead to a strong reduction of the Curie temperature compared to the GdScGe parent, but without affecting the saturation magnetization. With a further increase in Sb content, the first compositions showing the presence of the CeFeSi-type structure of the antimonide, [Formula: see text], coincide with the appearance of an antiferromagnetic phase. The application of a finite magnetic field reveals a jump in magnetization toward a fully saturated ferromagnetic state. This antiferro-ferromagnetic transformation is not associated with a sizeable latent heat, as confirmed by heat capacity measurements. The electronic structure calculations for [Formula: see text] indicate that the key factor in the conversion from the ferromagnetic CeScSi-type to the antiferromagnetic CeFeSi-type structure is the disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aa93aaDOI Listing

Publication Analysis

Top Keywords

[formula text]
16
heat capacity
12
cefesi-type structure
12
structure
9
electronic structure
8
crystal structure
8
structure magnetism
8
cescsi-type structure
8
structure adopted
8
capacity measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!