Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To prevent bone metastasis, we developed polyethylene glycol (PEG)-conjugated aspartic acid (Asp)-modified liposomes (PEG-Asp-Lipo) as a bone-targeting carrier of paclitaxel (PTX) by using Asp-modified 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE-Asp). The affinity of Asp-modified liposomes to hydroxyapatite increased as the concentration of DPPE-Asp increased. The bone accumulation of [H]-labeled PEG(2)-Asp(33)-Lipo was approximately 24.6% 360 min after intravenous injection in mice, in contrast to 5.4% and 6.7% of [H]-labeled normal Lipo and PEG(2)-Lipo, respectively. Similarly, [C]-labeled PTX encapsulated into PEG(2)-Asp(33)-Lipo predominantly accumulated in the bone. Furthermore, using an in situ imaging experiment, we observed that near-infrared fluorescence-labeled PEG(2)-Asp(33)-Lipo selectively accumulated in the bone near the joint after intravenous injection in mice. We also found that FITC-labeled PEG(2)-Asp(33)-Lipo predominantly accumulated on eroded and quiescent bone surfaces. In a bone metastatic tumor mouse model, in which B16-BL6/Luc cells were injected into the left ventricle of female C57BL/6 mice, metastatic bone tumor growth was significantly inhibited by an intravenous injection of PEG(2)-Asp(33)-liposomal PTX. In contrast, PEGylated liposomal PTX hardly affected the growth of metastatic bone tumors. These findings indicate that PEG(2)-Asp(33)-Lipo is a promising bone-targeting carrier for the delivery of PTX and treatment of bone metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2017.10.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!