In this study, the total contents, leachability into tea infusions, and bioaccessibility of lithium from black, Earl Grey, and green teas were evaluated by inductively coupled plasma mass spectrometry. Leachabilities were evaluated after infusion for 2, 5, or 10min. Bioaccessibility was determined in vitro under simulated stomach and intestinal digestion conditions. Addition of lemon juice, sugar, or milk for consumption, and calcium, tannic acid, and citric acid as additives were evaluated to determine if they affected bioaccessibility of lithium from black tea. The bioaccessible lithium contributed to 0.01%, 0.02%, and 0.03% of the recommended dietary allowances of lithium for black, Earl Grey, and green tea samples, respectively. These contributions may increase up to 4.4 times or decrease up to seven times with certain additives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2017.10.053 | DOI Listing |
F1000Res
January 2025
Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
Reddy and Reddy (2014) discuss the optimal timing for lithium levels in patients taking once-daily extended-release lithium formulations. They argue for blood sampling 24 h after the previous dose rather than the standard 12 h. I interpret the data quite differently.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.
View Article and Find Full Text PDFSci Rep
January 2025
Technology Innovation, PT Pertamina (Persero), Jl. Raya Bekasi KM. 20 Cakung, East Jakarta, Jakarta, 13920, Republic of Indonesia.
Selective lithium recovery from a mixture of LFP-NMC spent lithium batteries presents significant challenges due to differing structures and elemental compositions of the batteries. These differences necessitate a distinct recycling pathway for each, complicating the process for the mixture. This study explored a carbothermal reduction approach combined with water leaching under atmospheric conditions to achieve a selective lithium recovery.
View Article and Find Full Text PDFAdv Mater
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
Among direct recycling methods for spent lithium-ion batteries, solid-state regeneration is the route with minimal bottlenecks for industrial application and is highly compatible with the current industrial cathode materials production processes. However, surface structure degradation and interfacial impurities of spent cathodes significantly hinder Li replenishment during restoration. Herein, we propose a unique advanced oxidation strategy that leverages the inherent catalytic activity of spent layered cathode materials to address these challenges.
View Article and Find Full Text PDFNutrients
December 2024
Toxicology Area, University of La Laguna, Tenerife, Canary Islands, 38071 La Laguna, Spain.
Soybeans are a widely consumed legume, essential in Western diets and especially prominent in vegan and vegetarian nutrition. However, environmental contamination from anthropogenic sources, such as industrial emissions, wastewater, and pesticide use, has led to the accumulation of non-essential and toxic elements in legumes, potentially impacting human health. This study quantified the levels of 11 potential toxic elements (Al, B, Ba, Cd, Co, Cr, Li, Ni, Pb, Sr, V) in 90 samples of four soybean species (, , , ) using inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!