We prepared poly(N-isopropylacrylamide-r-N-3-(aminopropyl)methacrylamide) (poly(NIPAAm-r-NAPMAm)) gels with poly NIPAAm (PNIPAAm) grafted only in the surface region (so-called thermoresponsive surface-grafted gels) with various graft densities and investigated the effect of the graft density on the bulk volume change properties, shrinking and swelling, in response to temperature changes. Initiators for atom-transfer radical polymerization (ATRP) and structurally analogous compounds were introduced at certain ratios onto the surface regions of the gels, and a subsequent activator regeneration by electron transfer ATRP of NIPAAm was conducted in aqueous media. The graft densities and molecular weights of the grafted polymers were evaluated from the increment in the dry mass of the gels and the amount of introduced ATRP initiators, which was measured by elemental analyses. Three-dimensional measuring laser microscopy revealed that the prepared gels had graft-density-dependent fine wrinkle structures on their surfaces. The surface-grafted gels induced the formation of skin layers during the shrinking process in response to a temperature increase, and their permeability strongly depended on the graft density. The graft density also controlled the kinetics of the swelling behavior in response to a temperature decrease. These physical properties were discussed on the basis of Young's modulus of the surface determined by an atomic force microscopy force curve measurement and the homogeneity of the surface polymer network observed by cryo-scanning electron microscopy. This makes it possible to arbitrarily control the characteristics of gels as open or semiclosed systems, which was uniquely determined by the designs of the surface gel networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.7b03597 | DOI Listing |
Langmuir
May 2023
Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
Attractive (non-self-assembling) aqueous cellulose nanocrystal (CNC) suspensions were topologically tailored into isotropic gels through the surface grafting of dialkyl groups. We thus focus on the influence of CNC concentration, including for pristine CNC, surface linker branching, branching degree, and the influence of side group size and branch-on-branch surface-grafted groups. The resulting mobility and strength of interaction in particle-particle interaction mediated by the surface groups was investigated from a rheological point of view.
View Article and Find Full Text PDFMacromol Rapid Commun
May 2023
Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
Highly stretchable, repairable, and tough nanocomposite hydrogels are designed by incorporating hydrophobic carbon chains to create first-layer cross-linking among the polymer matrix and monomer-modified polymerizable yet hydrophobic nanofillers to create second-layer strong polymer-nanofiller clusters involving mostly covalent bonds and electrostatic interactions. The hydrogels are synthesized from three main components: hydrophobic monomer DMAPMA-C18 by reacting N-[3-(dimethylamino)propyl]methacrylamide] (DMAPMA) with 1-bromooctadecane, monomer N,N-dimethylacrylamide (DMAc), and monomer-modified polymerizable hydrophobized cellulose nanocrystal(CNC-G) obtained by reacting CNC with 3-trimethoxysily propyl methacrylate. The polymerization of DMAPMA-C18 and DMAc and physical cross-linking due to the hydrophobic interactions between C18 chains make DMAPMA-C18/DMAc hydrogel.
View Article and Find Full Text PDFSoft Matter
August 2022
South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
Coordination nanocage (CNC) incorporated gels have attracted enormous attention for the effective integration of micro-porosity, mechanical flexibility and processability; however, the understanding of their microscopic structure-property relationships remains unclear. Herein, CNCs with 24 surface grafted cholesterol groups are constructed precisely and their gelation can be manipulated upon the tunning of solvent polarities. Optically homogeneous organogels can be formed by introducing a certain amount of bad solvents into the solutions of hairy CNCs and the gelation can be reversed through temperature variation.
View Article and Find Full Text PDFPLoS One
July 2024
Dept. of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases.
View Article and Find Full Text PDFBiomed Mater
March 2020
State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
Gelatin cryogels are good candidate scaffolds for tissue engineering because of their interconnected macroporous structure. For bone regeneration, inorganic components are chosen to reinforce gelatin cryogels: (i) to mimic the compositions of natural bone tissue and (ii) to meet the mechanical requirements of bone repairing. Cryogels were prepared from methacrylated gelatin (GelMA) in this study, and hydroxyapatite nanorods (HANRs) with surface-grafted acrylate groups (D-HANRs) were synthesized to reinforce the cryogels, in which, the crosslinking between GelMA and D-HANRs was expected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!