Background: Inflammation is the response of the immune system that guards the body against several harmful stimuli in normal conditions. However, in response to ionizing radiation that leads to a massive cell death and DNA aberrations, this phenomenon causes various side effects in normal tissues. Inflammation is involved in various side effects such as gastrointestinal toxicity, mucositis, skin reactions, nervous system damage, pneumonitis, fibrosis and so on.
Discussion: Observations have proposed that inflammatory mediators are involved in the toxic effect of ionizing radiation on non-irradiated cells via a phenomenon named bystander effect. Inflammation in both irradiated and non-irradiated cells can trigger genomic instability, leading to increased risk of carcinogenesis. Targeting the inflammatory mediators has been an interesting idea for improving the therapeutic ratio throughout the reduction of normal tissue injury as well as an increase in tumor response to radiotherapy.
Conclusion: So far, various targets have been proposed for the amelioration of radiation toxicity in radiotherapy. Of different targets, NF-κB, COX-2, some of NADPH Oxidase subfamilies, TGF-β, p38 and the renin-angiotensin system have shown promising results. Interestingly, inhibition of these targets can help sensitize the tumor cells to the radiation treatment with some mechanisms such as suppression of angiogenesis and tumor growth as well as induction of apoptosis. In this review, we focus on recent advances on promising studies for targeting the inflammatory mediators in radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1874467210666171108165641 | DOI Listing |
BMC Complement Med Ther
January 2025
Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.
Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.
Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).
Cardiovasc Intervent Radiol
January 2025
Department of Immunology, Faculty of Medicine, Kindai University, Osaka, Japan.
Purpose: This study aimed to compare systemic immune responses and metastatic effects induced by radiofrequency ablation (RFA) and irreversible electroporation (IRE) in murine tumor models. We assessed cytokine production, growth of treated and untreated metastatic tumors, and synergy with immune checkpoint inhibitors (ICIs).
Materials And Methods: Hep55.
Gut
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. Electronic address:
Ethnopharmacological Relevance: Huanglian Ganjiang decoction (HGD), which is composed of Chinese medicines with cold, warm, and astringent properties, has demonstrated significant therapeutic efficacy in ulcerative colitis (UC). However, the underlying mechanisms remain unclear, highlighting the need for a multi-faceted investigation. Disassembling prescriptions is a crucial approach for investigating compatibility mechanisms.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea. Electronic address:
Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!