The most efficient and commonly used electrochemiluminescence (ECL) emitters are luminol, [Ru(bpy) ] , and derivatives thereof. Luminol stands out due to its low excitation potential, but applications are limited by its insolubility under physiological conditions. The water-soluble m-carboxy luminol was synthesized in 15 % yield and exhibited high solubility under physiological conditions and afforded a four-fold ECL signal increase (vs. luminol). Entrapment in DNA-tagged liposomes enabled a DNA assay with a detection limit of 3.2 pmol L , which is 150 times lower than the corresponding fluorescence approach. This remarkable sensitivity gain and the low excitation potential establish m-carboxy luminol as a superior ECL probe with direct relevance to chemiluminescence and enzymatic bioanalytical approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201708630DOI Listing

Publication Analysis

Top Keywords

low excitation
8
excitation potential
8
physiological conditions
8
m-carboxy luminol
8
luminol
6
electrochemiluminescence bioassays
4
bioassays water-soluble
4
water-soluble luminol
4
luminol derivative
4
derivative outperform
4

Similar Publications

A Theoretical Study on Crossings Among Electronically Excited States and Laser Cooling of Group VIA (S, Se, and Te) Hydrides.

J Comput Chem

January 2025

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Various electronically excited states and the feasibility of direct laser cooling of SH, SeH, and TeH are investigated using the highly accurate ab initio and dynamical methods. For the detailed calculations of the seven low-lying Λ-S states of SH, we utilized the internally contracted multireference configuration interaction approach, considering the spin-orbit coupling (SOC) effects. Our calculated spectroscopic constants are in very good agreement with the available experimental results.

View Article and Find Full Text PDF

Rationalization of the structural, electronic and photophysical properties of silver(I) halide -picolylamine hybrid coordination polymers.

Dalton Trans

January 2025

Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.

Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)] compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)] family.

View Article and Find Full Text PDF

detection of hypochlorous acid (HOCl) is critical for understanding its complex physiological and pathological roles. Fluorescent probes, known for their sensitivity and selectivity, are the preferred approach for such detections. Anthracene carboxyimide, an analog of naphthalimide, offers extended excitation and emission wavelengths, making it an excellent candidate for developing new fluorescent probes that address the limitations of naphthalimide.

View Article and Find Full Text PDF

Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.

View Article and Find Full Text PDF

Photocatalytic technology for removing organic dye pollutants has gained considerable attention because of its ability to harness abundant solar energy without requiring additional chemical reagents. In this context, YF spheres doped with Yb, Er, Tm (YF) are synthesized using a hydrothermal method and are subsequently coated with a layer of graphitic carbon nitride (g-CN) with Au nanoparticles (NPs) adsorbed onto the surface to create a core-shell structure, designated as YF: Yb, Er, Tm@CN-Au (abbreviated as YF@CN-Au). The core-shell composites demonstrate remarkable stability, broadband absorption, and exceptional photocatalytic activity across the ultraviolet (UV) to near-infrared (NIR) spectral range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!