Sulfide influence on metal behavior in a polluted southern Mediterranean lagoon: implications for management.

Environ Sci Pollut Res Int

Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, F-25030, Besançon Cedex, France.

Published: January 2018

The degree of pyritization and degree of trace metal pyritization (DTMP) were investigated in sediments from Ghar El Melh Lagoon (northern Tunisia) in order to study metal deposition. A sediment core and 28 samples were thus taken in summer 2008, and metals and sulfate were analyzed in pore water/pyrite. Acid-volatile sulfide and metals were simultaneously extracted from these two fractions and the role of pyrite in the metal cycling studied. To examine pyrite presence and mineralogical form in sediments, X-ray diffraction of the washed and decarbonated sediment was performed along with scanning electron microscopy. Results showed that pyrite is present in fromboidal and euhedral forms. Thermodynamic calculation highlighted the formation of metallic sulfides and the co-precipitation of metals with iron sulfides. The DTMP increases with depth, indicating that these metals are either sequestered as sulfides or that they co-precipitate with pyrite into the deep sediment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-017-0529-6DOI Listing

Publication Analysis

Top Keywords

sulfide influence
4
metal
4
influence metal
4
metal behavior
4
behavior polluted
4
polluted southern
4
southern mediterranean
4
mediterranean lagoon
4
lagoon implications
4
implications management
4

Similar Publications

Copper foil is widely used in electronic components and devices. This study investigates the corrosion behavior of copper foil on printed circuit boards exposed for one year in a closed atmospheric environment across 22 different sites in the Sichuan-Tibet region. Through electrochemical, SEM/EDS, and XRD analyses, the corrosion behavior of copper foil material across the five selected sites (Meishan, Mangkang, Luding, Batang, and Panzhihua) and the influence of environmental factors were discussed.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) is a gasotransmitter that modulates vascular tone, causing either vasodilation or vasoconstriction depending on the vascular bed, species, and experimental conditions. The cold-sensitive transient receptor potential ankyrin-1 (TRPA1) channel mediates HS-induced effects; however, its contribution to the vasomotor responses of different arteries at different temperatures has remained unclear. Here, we aimed to fill this gap by comparing the effects of sodium sulfide (NaS), which is a fast-releasing HS donor, on the isolated carotid and tail skin arteries of rats and mice at cold and normal body temperature with wire myography.

View Article and Find Full Text PDF

Microbiota-derived hydrogen sulfide (HS) plays a crucial role in modulating the gut-brain axis, with significant implications for neurodegenerative diseases such as Alzheimer's and Parkinson's. HS is produced by sulfate-reducing bacteria in the gut and acts as a critical signaling molecule influencing brain health via various pathways, including regulating inflammation, oxidative stress, and immune responses. HS maintains gut barrier integrity at physiological levels and prevents systemic inflammation, which could impact neuroinflammation.

View Article and Find Full Text PDF

All-solid-state Li-ion batteries (ASSBs) represent a promising leap forward in battery technology, rapidly advancing in development. Among the various solid electrolytes, argyrodite thiophosphates Li6PS5X (X = Cl, Br, I) stand out due to their high ionic conductivity, structural flexibility, and compatibility with a range of electrode materials, making them ideal candidates for efficient and scalable battery applications. However, despite significant performance advancements, the sustainability and recycling of ASSBs remain underexplored, posing a critical challenge for achieving efficient circular processes.

View Article and Find Full Text PDF

Effects of roasting on physicochemical characteristics and flavor substances of germinated brown rice.

Food Sci Biotechnol

January 2025

College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China.

Unlabelled: Roasting can dissolve the nutrients accumulated in germinated brown rice (GBR). This study investigated the effects of roasting on physical properties, nutrients and flavor substances of GBR. Results demonstrated that longer roasting time resulted in more browning and a decrease in the moisture content.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!