Stem cells (SCs) have special potency to differentiate into different types of cells, especially cardiomyocytes. In order to demonstrate the therapeutic applications of these cells, various investigations are recently being developed. Cardiac progenitor cells are endogenous cardiac SCs that found to express tyrosine kinase receptors, c-Kit and other stemness features in adult heart, contributing to the regeneration of cardiac tissue after injury. This lineage is able to efficiently trans-differentiate into different cell types such as cardiomyocytes, endothelial cells, and smooth muscle cells. Noticeably, several cardiac progenitor cells have been identified until yet. The therapeutic applications of cardiac SCs have been studied previously, which could introduce a novel therapeutic approach in the treatment of cardiac disorders. The current review enlightens the potency of cardiac progenitor cells features and differentiation capacity, with current applications in cardiovascular field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670333PMC
http://dx.doi.org/10.15171/jcvtr.2017.22DOI Listing

Publication Analysis

Top Keywords

cardiac progenitor
16
progenitor cells
16
cells
9
cardiac
8
therapeutic applications
8
cardiac scs
8
cells application
4
application cardiovascular
4
cardiovascular disease
4
disease stem
4

Similar Publications

Aneurysm Is Restricted by CD34 Cell-Formed Fibrous Collars Through the PDGFRb-PI3K Axis.

Adv Sci (Weinh)

December 2024

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Hyperreactive B cells instruct their elimination by T cells to curb autoinflammation and lymphomagenesis.

Immunity

December 2024

Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Max-Planck Institute of Biochemistry, 82152 Planegg, Germany. Electronic address:

B cell immunity carries the inherent risk of deviating into autoimmunity and malignancy, which are both strongly associated with genetic variants or alterations that increase immune signaling. Here, we investigated the interplay of autoimmunity and lymphoma risk factors centered around the archetypal negative immune regulator TNFAIP3/A20 in mice. Counterintuitively, B cells with moderately elevated sensitivity to stimulation caused fatal autoimmune pathology, while those with high sensitivity did not.

View Article and Find Full Text PDF

International Cardiovascular Development, Anatomy, and Regeneration (ICDAR) Community Meeting: Prague 2024.

J Cardiovasc Dev Dis

December 2024

Biosciences Institute, Newcastle University, Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.

The International Cardiovascular Anatomy, Development, and Regeneration meeting was held from 18-20 September 2024, in Prague, Czech Republic, supported by the European Society of Cardiology's Working Group on Development, Anatomy, and Pathology. Hosted at the Institute of Anatomy, First Faculty of Medicine, the event began with a hands-on workshop on normal and malformed human hearts, covering morphology, echocardiographic imaging, and rare congenital cases. The session allowed participants to examine and image both normal and malformed hearts.

View Article and Find Full Text PDF

To enhance therapeutic strategies for cardiovascular diseases, the development of more reliable in vitro preclinical systems is imperative. These models, crucial for disease modeling and drug testing, must accurately replicate the 3D architecture of native heart tissue. In this study, we engineered a scaffold with aligned poly(lactic--glycolic acid) (PLGA) microfilaments to induce cellular alignment in the engineered cardiac microtissue (ECMT).

View Article and Find Full Text PDF

Exposure to Nanoplastics Cause Caudal Vein Plexus Damage and Hematopoietic Dysfunction by Oxidative Stress Response in Zebrafish .

Int J Nanomedicine

December 2024

Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.

Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.

Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!