Fibronectin 1 (FN1) is a member of the glycoprotein family located on chromosome 2q35. It has been reported that FN1 is upregulated in many tumors, and its expression is negatively related to the prognosis and survival of cancer patients. Through data analysis, we found that FN1 is upregulated in nasopharyngeal carcinoma (NPC). This study aimed to investigate how FN1 expression affects NPC cell behavior. In this study, we downregulated FN1 in two NPC cell lines, 5-8F (EBV-) and C666-1 (EBV+), and evaluated invasion, migration and apoptosis. FN1 promoted migration and invasion by upregulating MMP9 and MMP2 expression; the NF-κB/P65 signaling pathway was also affected by FN1. FN1 suppressed apoptosis in NPC cells by upregulating BCL2 and increasing the nuclear localization of P65, both by inducing cytosolic accumulation and nuclear translocation, but FN1 expression was not reduced when the NF-κB/P65 pathway was inhibited in the negative control (NC) group. Compared with NC cells, shFN1 cells showed little change in apoptosis when the NF-κB/P65 pathway was activated by LPS. These results suggest that FN1 regulates apoptosis though P65 in the NF-κB pathway. Our results show that FN1 plays an important role in NPC cells and is a potential target for NPC treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5666059PMC

Publication Analysis

Top Keywords

fn1
11
nf-κb pathway
8
nasopharyngeal carcinoma
8
fn1 upregulated
8
fn1 expression
8
npc cell
8
pathway fn1
8
npc cells
8
nf-κb/p65 pathway
8
npc
6

Similar Publications

Background/aim: Glioblastoma is the most malignant brain tumor, and despite advances in treatment, survival rates are still dismal. Therefore, a comprehensive understanding of the underlying molecular mechanisms of glioblastoma is needed. This study suggests potential therapeutic targets in glioblastoma that may provide new therapeutic insights.

View Article and Find Full Text PDF

Sperm cryopreservation is a useful storage technique in artificial insemination. Nanoparticles and nanovesicles such as exosomes are widely used in sperm cryopreservation procedures to alleviate cold-induced injury inflicted during sperm freezing. The objective of the present study was to examine the impact of varying concentrations of exosomes derived from seminal plasma added to a freezing extender on the quality of post-thawed bull sperm.

View Article and Find Full Text PDF

Brain metastases (BrMs) and gliomas are two typical human brain tumors with high incidence of mortalities and distinct clinical challenges, yet the understanding of these two types of tumors remains incomplete. Here, a multidimensional proteomic landscape of BrMs and gliomas to infer tumor-specific molecular pathophysiology at both tissue and plasma levels is presented. Tissue sample analysis reveals both shared and distinct characteristics of brain tumors, highlighting significant disparities between BrMs and gliomas with differentially activated upstream pathways of the PI3K-Akt signaling pathway that have been scarcely discussed previously.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a highly heterogeneous tumor, and the development of accurate predictive models for prognosis and drug sensitivity remains challenging.

Methods: We integrated laboratory data and public cohorts to conduct a multi-omics analysis of HCC, which included bulk RNA sequencing, proteomic analysis, single-cell RNA sequencing (scRNA-seq), spatial transcriptomics sequencing (ST-seq), and genome sequencing. We constructed a tumor purity (TP) and tumor microenvironment (TME) prognostic risk model.

View Article and Find Full Text PDF

The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO and NH emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!