Background: IgE sensitization to storage proteins from nuts and seed is often related to severe allergic symptoms. There is a risk of immunological IgE cross-reactivity between storage proteins from different species. The potential clinical implication of such cross-reactivity is that allergens other than the known sensitizer can cause allergic symptoms. Previous studies have suggested that kiwi seed storage proteins may constitute hidden food allergens causing cross-reactive IgE-binding with peanut and other tree nut homologs, thereby mediating a potential risk of causing allergy symptoms among peanut ant tree nut allergic individuals. The objective of this study was to investigate the degree of sensitization towards kiwi fruit seed storage proteins in a cohort of peanut allergic individuals.

Methods: A cohort of 59 adolescents and adults with peanut allergy was studied, and self reported allergies to a number of additional foods were collected. Quantitative IgE measurements to seed storage proteins from kiwi and peanut were performed.

Results: In the cohort, 23 out of the 59 individuals were reporting kiwi fruit allergy (39%). The frequency of IgE sensitization to kiwi fruit and to any kiwi seed storage protein was higher among peanut allergic individuals also reporting kiwi fruit allergy ( = 0.0001 and  = 0.01). A positive relationship was found between IgE levels to 11S globulin (r = 0.65) and 7S globulin (r = 0.48) allergens from kiwi and peanut, but IgE levels to 2S albumin homologs did not correlate. Patients reporting kiwi fruit allergy also reported allergy to hazelnut ( = 0.015), soy ( < 0.0001), pea ( = 0.0002) and almond ( = 0.016) to a higher extent than peanut allergic individuals without kiwi allergy.

Conclusions: Thirty-nine percent of the peanut allergic patients in this cohort also reported kiwi fruit allergy, they displayed a higher degree of sensitization to kiwi storage proteins from both kiwi and peanut, and they also reported a higher extent of allergy to other nuts and legumes. On the molecular level, there was a correlation between IgE levels to 11S and 7S storage proteins from kiwi and peanut. Taken together, reported symptoms and serological findings to kiwi in this cohort of patients with concurrent allergy to peanut and kiwi fruit, could be explained by a combination of cross-reactivity between the 11S and 7S globulins and co-sensitization to the 2S albumin Act d 13.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664576PMC
http://dx.doi.org/10.1186/s12948-017-0073-4DOI Listing

Publication Analysis

Top Keywords

storage proteins
24
seed storage
20
kiwi fruit
20
ige sensitization
12
sensitization kiwi
12
kiwi seed
12
peanut allergic
12
allergic individuals
12
individuals reporting
12
reporting kiwi
12

Similar Publications

The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.

View Article and Find Full Text PDF

Berardinelli-Seip congenital lipodystrophy (BSCL), also known as congenital generalized lipodystrophy (CGL), is an exceptionally rare autosomal recessive disorder marked by a significant deficiency of adipose tissue throughout the body. This lack of adipose tissue, normally found beneath the skin and between internal organs, leads to impaired adipocyte formation and fat storage, causing lipids to accumulate in atypical tissues such as muscles and the liver. The extent of adipose tissue loss directly influences the severity of symptoms, which can include a muscular appearance, increased appetite, bone cysts, marrow fat depletion, acromegalic features, severe insulin resistance, skeletal muscle hypertrophy, hypertrophic cardiomyopathy, hepatic steatosis, hepatomegaly, cirrhosis, and intellectual disability.

View Article and Find Full Text PDF

Circular mRNA Vaccine against SARS-COV-2 Variants Enabled by Degradable Lipid Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.

The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target.

Adv Biol Regul

January 2025

Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, 08901, USA.

Phosphatidic acid phosphatase, a conserved eukaryotic enzyme that catalyzes the Mg-dependent dephosphorylation of phosphatidic acid to produce diacylglycerol, has emerged as a vital regulator of lipid homeostasis. By controlling the balance of phosphatidic acid and diacylglycerol, the enzyme governs the use of the lipids for synthesis of the storage lipid triacylglycerol and the membrane phospholipids needed for cell growth. The mutational, biochemical, and cellular analyses of yeast phosphatidic acid phosphatase have provided insights into the structural determinants of enzyme function with the understanding of its regulation by phosphorylation and dephosphorylation.

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!