Eocene squalomorph sharks (Chondrichthyes, Elasmobranchii) from Antarctica.

J South Am Earth Sci

Department of Palaeontology, University of Vienna, Geozentrum, Althanstraße 14, 1090 Wien, Austria.

Published: October 2017

Rare remains of predominantly deep-water sharks of the families Hexanchidae, Squalidae, Dalatiidae, Centrophoridae, and Squatinidae are described from the Eocene La Meseta Formation, Seymour Island, Antarctic Peninsula, which has yielded the most abundant chondrichthyan assemblage from the Southern Hemisphere to date. Previously described representatives of sp., , , sp., and sp. are confirmed and dental variations are documented. Although the teeth of sp. differ from other Palaeogene squatinid species, we refrain from introducing a new species. A new dalatiid taxon, gen. et sp. nov. is described. This new material not only increases the diversity of Eocene Antarctic elasmobranchs but also allows assuming that favourable deep-water habitats were available in the Eocene Antarctic Ocean off Antarctica in the Eocene. The occurrences of deep-water inhabitants in shallow, near-coastal waters of the Antarctic Peninsula agrees well with extant distribution patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5673068PMC
http://dx.doi.org/10.1016/j.jsames.2017.07.006DOI Listing

Publication Analysis

Top Keywords

antarctic peninsula
8
eocene antarctic
8
eocene
5
eocene squalomorph
4
squalomorph sharks
4
sharks chondrichthyes
4
chondrichthyes elasmobranchii
4
elasmobranchii antarctica
4
antarctica rare
4
rare remains
4

Similar Publications

Antarctica has one of the most sensitive ecosystems to the negative effects of Persistent Organic Pollutants (POPs) on its biodiversity. This is because of the lower temperatures and the persistence of POPs that promote their accumulation or even biomagnification. However, the impact of POPs on vascular plants is unknown.

View Article and Find Full Text PDF

Decrypting the phylogeny and metabolism of microbial dark matter in green and red Antarctic snow.

ISME Commun

January 2025

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.

View Article and Find Full Text PDF

Chemical Changes Under Heat Stress and Identification of Dendrillolactone, a New Diterpene Derivative with a Rare Rearranged Spongiane Skeleton from the Antarctic Marine Sponge .

Mar Drugs

December 2024

Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.

The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, corals, and many other animals. Among the sponges, the bright yellow is commonly known for using secondary diterpenoids as a defensive mechanism against local potential predators.

View Article and Find Full Text PDF

High diversity of fungal ecological groups from ice-free pristine and disturbed areas in the Fildes Peninsula, King George Island, Antarctica.

PLoS One

January 2025

Departamento de Química, Laboratorio de Química Aplicada y Sustentable (LabQAS), Universidad del Bío-Bío, Concepción, Chile.

Ice-free areas are habitats for most of Antarctica's terrestrial biodiversity. Although fungal communities are an important element of these habitats, knowledge of their assemblages and ecological functions is still limited. Herein, we investigated the diversity, composition, and ecological functionality of fungal communities inhabiting sediments from ice-free areas across pristine and anthropogenically impacted sites in the Fildes Peninsula on King George Island, Antarctica.

View Article and Find Full Text PDF

Assessing the impact of sewage and wastewater on antimicrobial resistance in nearshore Antarctic biofilms and sediments.

Environ Microbiome

January 2025

Basecamp Research Ltd, Unit 510 Clerkenwell Workshops, 27 Clerkenwell Close, London, EC1R 0AT, UK.

Background: Despite being recognised as a global problem, our understanding of human-mediated antimicrobial resistance (AMR) spread to remote regions of the world is limited. Antarctica, often referred to as "the last great wilderness", is experiencing increasing levels of human visitation through tourism and expansion of national scientific operations. Therefore, it is critical to assess the impact that these itinerant visitors have on the natural environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!