We demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through an h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678191 | PMC |
http://dx.doi.org/10.1038/s41598-017-12684-x | DOI Listing |
Langmuir
December 2024
Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.
Nucleic acid transport through protein-based pores is a well-characterized phenomenon due in part to advancements in nanopore sequencing. A less studied area is nucleic acid transport through extended protein-based channels, where the additional surface area and increased contact time allow for the study of prolonged binding interactions. Porous protein crystals composed of "CJ", a putative polyisoprenoid-binding protein from , represent a favorable, highly ordered material for studying DNA transport and binding/unbinding along protein-based channels.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China.
Nanopore sensing is now reshaping analytical proteomics with its simplicity, convenience, and high sensitivity. Determining the length of polyglutamine (polyQ) is crucial for the rapid screening of Huntington's disease. In this computational study, we present a cross-nanoslit detection approach to determine the polyQ length, where the nanoslit is carved within a two-dimensional (2D) in-plane heterostructure of graphene (GRA) and hexagonal boron nitride (hBN).
View Article and Find Full Text PDFACS Nano
October 2024
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
Highly-dense small-feature-size nanopatterns and nanoporous membranes are important in advanced microelectronics, nanofiltration, and biomimic device manufacturing. Here, we report the synthesis and self-assembly of a series of high-interaction-parameter (high-χ) silicon-containing hierarchical block copolymers (BCPs) with cross-linkable subordering chalcone motifs, which possess both an intrinsic native etching contrast for nanofabrication and cross-linkability under ultraviolet light for generating free-standing membranes. BCPs with a volume fraction of chalcone block of 55-74% form ordered primary nanostructures with period 15-22 nm including lamellae, double gyroid, hexagonally packed cylinders, and body-centered cubic spheres of the minority Si-containing block.
View Article and Find Full Text PDFChemSusChem
October 2024
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
The catalytic functionalization of CO into high-value compounds comprises a promising approach to mitigate its atmospheric content and sustainable generation of fine chemicals. In this respect, covalent organic frameworks (COFs) offer great potential in carbon dioxide capture and utilization. Herein, we report application of a crystalline, nanoporous 2D COF (ET-BP-COF) obtained by condensation of 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl) tetraaniline (ET-NH) and 2,2'-bipyridyl-5,5'-dialdehyde (BP-CHO) building blocks for strategic utilization of CO.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
Anodized aluminum oxide (AAO) molds were used for the production of large-area and inexpensive superhydrophobic polymer films. A controlled anodization methodology was developed for the fabrication of hierarchical micro-nanoporous (HMN) AAO imprint molds (HMN-AAO), where phosphoric acid was used as both an electrolyte and a widening agent. Heat generated upon repetitive high-voltage (195 V) anodization steps is effectively dissipated by establishing a cooling channel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!